Z01 Kaoudi
Sebastian Kruse

Jorge Quiané

BOSS

@

— Turning a Zoo into a Circu

0p

Let's Start
with 2 Facts

Nature Inspired

Go fast?

Endurance?

Go to the
forest?

FACT 1:
One Size

FACT 2: of Systems

What is ?

A System Tamer

Where in the Analytics Stack?

rooications) (crunch) (i)
(Mahout } [Pig] (_Girapn

Processing
Platforms

Storage
Engines

Where in the Analytics Stack?

roications) (ciunch) ()
(Mahout J [Pig] (Giraph

Cross-Platform
System

Processing
Platforms

Storage
Engines

What is for?

el uanwmge]
Builder 12, 4,10]| [0.1,0.4,0.3]

Processing Model

)

9

Map

Map

GlobalReduce

4"
-
’4
-
-
M p " (0
a -
'f
L 4
‘f
-
'f
-
"‘
-

sink

ONVENIEN quantum 1]
_____________ Builder 1 \[2, 4,10]| [0.1, 0.4, 0.3]

Three-Layer Abstraction

\ / Q .M, . \ /
Iy Ny A Iy
I \ : I \
! \ ; l \
1 \ o N 1 \
I \ ! \

uoneziwindo 18Ae7-aauyl

This Tutorial

Rheem cost functions

* Execution logs
* Regression on the logs
* Cost functions

This Tutorial

Demo

ML app (ML4all)
e Extending operators

Hands on Rheem

* Word count
* IND discovery
 Pagerank

Rheem cost functions

* Execution logs
* Regression on the logs
e Cost functions

Get Rheem

- Rheem web page

http://da.qgcri.org/rheem/

- Rheem repository

https://github.com/daqcri/rheem
$ git clone https://github.com/daqgcri/rheem.git

- Examples

https://github.com/sekruse/rheem-examples
$ git clone \
https://github.com/sekruse/rheem-examples.git

- Useful apps

IntelliJ IDEA/eclipse, Git, Maven
IPython/Jupyter with jupyter-scala kernel

« Data

realworld://flash.disk/

Time to Play

Getting Ready

* How to get Rheem
 How to setup Rheem

Demo Rheem cost functions
ML app (ML4all) * Execution logs
e Extending operators * Regression on the logs

e Cost functions

Wordcount

‘mf e ——
. This sentence contains “twice” twice. {i

= e ——

Wordcount on Rheem

Blueprint for Rheem Apps

1. Declare Rheem dependency

1. Declare Dependencies

- Available in Maven Central

org.qcri.rheem
rheem- %%

0.2.0

- Java and Scala API: rheem-api

- modules: rheem-basic, rheem-java, rheem-spark,
rheem-sqglite3, rheem-postgres, rheem-graphchi

2. Obtain a Configuration

hdfs://namenode/tmp/ ;

2200
2.7

spark://sparkmaster:/077/
2000
4
0.3
8.6
9000
|

jdbc:postgres:my-db i

2. Obtain a Configuration

- Configuration defines cost functions, advanced features, app
properties

- val configuration = new Configuration()

- Explicitly specify a configuration file
java -Drheem.configuration=url://to/my/
rheem.properties ...

- Puta rheem.properties file on your classpath

- If none applies, there are fallback values

3. Register Plugins

- new RheemContext(configuration).withPlugin(...)

- Pl ugl ns provide execution platforms and/or operators

- Avallable plugins:

4. Build a Rheem

Start with Pl anBui | der and chain operations.

planBuilder =
PlanBuilder(rheemContext)
.withJobName(
.withUdfJarsOf(.getClass)

wordCounts = planBuilder
.readTextFile(url)
.flatMap(..., selectivity = ...)
.filter(..., selectivity = ...)
.map(...)
.TeduceByKey(...)
.collect()

4. Build a Rheem Plan (Il

Rheem supports loops, which is important for
machine learning algorithms:

myResult = ..
.repeat(n, i => i.map(m))‘

*

Data flows can be joined Iin a flexible manner:

sizeDataset myDataset.count

result = myDataset
.map(...) .withBroadcast(

sizeDataset, “size”

4. Build a Rheem Plan (Il

CustomSource |

APl Is just syntactic sugar - use your own operators!

BlanBuiLder.Load(CustomSource())
| . flatmap(...) ,
.customOperator(CustomOperator())‘

|

.map(...)

.TeduceByKey(...)
.customOperator(

CustomSink())

- Design choice: creating a sink triggers execution

- Avallable sinks

- Note: Only when execution is triggered, Rheem

S. Trigger Execution

- Rheem allows for multiple sinks — stay tuned

-collect(): fetch dataset as JVM-based
collection

-writeAsTextFile(...): format & write
dataset to a text file

start its optimization, let alone execution.

6. Let Rheem do the Rest

6. Let Rheem do the Rest

| Inflate > 4

6. Let Rheem do the Rest

> Estimate

6. Let Rheem do the Rest

> Enumerate >

Java | Spark |
| textfile src. | j text file src.

Java | P 10.23s |
collect o ‘

- g10s ®

Spark |
collect |

Spark |
collection src.

Java
flat map
| 100..240's |

6. Let Rheem do the Rest

> Execute >

collect

STOETI IR Spark Java
flat map | filter | reduce by key

Java |
collection sink |

Task: Wordcount'

- Reduce number of Rheem operators.

- What are possible implications of doing so?
- Ww.r.t. performance?

- W.r.t. optimization hints?

- W.r.t. maintainability?

- W.r.t. Rheem’s optimization pipeline?

IND Discovery

Detect column pairs in a database, such that all values of the one
are included in the other.

Customer Address
id name c_id address
0 Den
J 0 12 Key Str
1 Lavel
1 883 Data Dr
2 Doe
3 Miller 3 /8 Base Pkw

IND Discovery

Customer Address

c id address

RDF PageRank

Parse

Introduce IDs

Resolve |IDs

Task: Tune PageRank

- Entities URLSs all conform to the pattern

<http://dbpedia.org/resource/..>
— eliminate that redundancy

- <http://dbpedia.org/resource/Category:..>

are no real entities
— remove them

- boost entities having a lot of outgoing links

— make graph undirected

Advanced App

Getting Ready

* How to get Rheem

 How to setup Rheem

Hands on Rheem

* Word count
 [ND discovery
* Pagerank

Rheem cost functions

* Execution logs
* Regression on the logs
e Cost functions

ML4all: ML on top of Rheem

Gradient Descent

Stochastic Gradient Decent (SGD)

j := sample from D

SGD Plan in Rheem
Y
Map g

Sample DoWhileLoop

Map
Y
GlobalReduce

Map

SGD Plan in Rheem

data points

L)

9 weights
weights
Map @ el i

Sample DoWhileLoop

Map
Y
GlobalReduce

Map

SGD Plan in Rheem

data points

S

Map

weights

Sample DoWhileLoop Collect

Map
GlobalReduce
Sink

eonvergence value

Extending Rheem with new operators

- Create core Rheem (platform-agnostic) operator
» Consider adding a cardinality estimator

- Create execution (platform-specific) operator
- Consider adding a cost function

- Create mappings from the Rheem operator to the
execution operator

Bootstrapping Rheem

Getting Ready Hands on Rheem
e How to get Rheem * Word count
* How to setup Rheem * IND discovery
* Pagerank
Demo Rheem cost functions
ML app (ML4all) * Execution logs
e Extending operators * Regression on the logs
* Cost functions

Rheem Worktlow

p> Log stats

Lazy Execution

Spark |
collect

Spark ; Spark ; Java |
- flatmap | B filter | reduce by key |

execution time: 23,338 ms

. . |
collection sink ;

Resolving Cost Functions

/;/ o m———

/

| It’s an optimization problem!

|

Applying Genetic
Optimization

Collecting execution data

- Rheem must keep track properly of when is what executed
— operators are self-descriptive in that respect

- Get cardinality estimates as accurate as possible
— Rheem monitors cardinalities and updates all estimates

- Gather sufficient, variant execution data

Complement execution data
- Provide models for the cost functions

- Account for heavy-weight UDFs

Ta ke Away http://da.qcri.org/rheem/

e A Cross-Platform System https://github.com/dagcri/rheem
e Focus on your App and let Rheem do the rest

e Platform-Agnostic Rheem plan
¢ Platform-Independent Jobs

e Custom Operators
* Cost Functions and Cardinalities

o Adaptive Optimization

Still To Come...

e | earning Cost Functions

e |[n-Memory Data Processing

--- e \lore Data Processing Platforms
e Cross-Platform Fault-Tolerance

