
><HOPSFS & EPIPE

HopsFS & ePipe
Mahmoud Ismail <maism@kth.se>

Gautier Berthou <gautier@sics.se>

1

www.hops.io
 @hopshadoop

github.com/hopshadoop

http://github.com/hopshadoop

><HOPSFS & EPIPE 2

Agenda

• From HDFS to HopsFS

• ePipe to enable a searchable HopsFS

• Tutorial

next 3

A File System with a
million ops/sec and
searchable in sub

seconds?!

next 4
Bill Gates’ biggest
 product regret?

><HOPSFS & EPIPE 5

WinFS

*http://www.zdnet.com/article/bill-gates-biggest-microsoft-product-regret-winfs/

•“WinFS was an attempt to bring the
benefits of schema and relational
databases to the Windows file
system. …The WinFS effort was
started around 1999 as the
successor to the planned storage
layer of Cairo and died in 2006
after consuming many thousands of
hours of efforts from really smart
engineers.”
- [Brian Welcker]*

><HOPSFS & EPIPE 6

HDFS

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

><HOPSFS & EPIPE 6

HDFS

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

><HOPSFS & EPIPE 6

HDFS

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

><HOPSFS & EPIPE 6

HDFS

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

directory -> {f1, f2,..}

><HOPSFS & EPIPE 6

HDFS

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

directory -> {f1, f2,..}
file -> {b1, b2,..}

><HOPSFS & EPIPE 6

HDFS

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

directory -> {f1, f2,..}
file -> {b1, b2,..}

block -> {r1, r2,..}

><HOPSFS & EPIPE 6

HDFS

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

directory -> {f1, f2,..}
file -> {b1, b2,..}

block -> {r1, r2,..}
….

><HOPSFS & EPIPE 7

JVM Heap is the limit

><HOPSFS & EPIPE 7

JVM Heap is the limit

• Storing NameNode metadata in JVM Heap

><HOPSFS & EPIPE 7

JVM Heap is the limit

• Storing NameNode metadata in JVM Heap

• Very efficient, yet

><HOPSFS & EPIPE 7

JVM Heap is the limit

• Storing NameNode metadata in JVM Heap

• Very efficient, yet

• Number of files/directories are limited

><HOPSFS & EPIPE 7

JVM Heap is the limit

• Storing NameNode metadata in JVM Heap

• Very efficient, yet

• Number of files/directories are limited

• Garbage collection pause times

><HOPSFS & EPIPE 8

One Lock to rule them all

/root

dir1 dir n...dir2

...

><HOPSFS & EPIPE 8

One Lock to rule them all

/root

dir1 dir n...dir2

...

multi-reader, single writer concurrency semantics

><HOPSFS & EPIPE 9

Move the NameNode metadata off the
JVM Heap

><HOPSFS & EPIPE 9

Move the NameNode metadata off the
JVM Heap

• Stateless NameNode

><HOPSFS & EPIPE 9

Move the NameNode metadata off the
JVM Heap

• Stateless NameNode

• Multiple NameNodes to increase Throughput

><HOPSFS & EPIPE 9

Move the NameNode metadata off the
JVM Heap

• Stateless NameNode

• Multiple NameNodes to increase Throughput

• Throughput dependent on our chosen data store

><HOPSFS & EPIPE 9

Move the NameNode metadata off the
JVM Heap

• Stateless NameNode

• Multiple NameNodes to increase Throughput

• Throughput dependent on our chosen data store

• Choosing a data store?

><HOPSFS & EPIPE 9

Move the NameNode metadata off the
JVM Heap

• Stateless NameNode

• Multiple NameNodes to increase Throughput

• Throughput dependent on our chosen data store

• Choosing a data store?

• An in-memory storage system that can be efficiently queried and
managed. Preferably Open-Source.

><HOPSFS & EPIPE 9

Move the NameNode metadata off the
JVM Heap

• Stateless NameNode

• Multiple NameNodes to increase Throughput

• Throughput dependent on our chosen data store

• Choosing a data store?

• An in-memory storage system that can be efficiently queried and
managed. Preferably Open-Source.

• Row-level locking

><HOPSFS & EPIPE 9

Move the NameNode metadata off the
JVM Heap

• Stateless NameNode

• Multiple NameNodes to increase Throughput

• Throughput dependent on our chosen data store

• Choosing a data store?

• An in-memory storage system that can be efficiently queried and
managed. Preferably Open-Source.

• Row-level locking

• Efficient Cross partition transaction

><HOPSFS & EPIPE 10

MySQL Cluster (NDB) to the rescue

><HOPSFS & EPIPE 10

MySQL Cluster (NDB) to the rescue

• NewSQL (Relational) DB

• User-defined partitioning

• Row-level Locking

• Distribution-aware transactions

• Partition-pruned index scans

• Real-time, 2-Phase Commit

• 1.2 sec TransactionInactive timeouts

><HOPSFS & EPIPE 10

MySQL Cluster (NDB) to the rescue

• NewSQL (Relational) DB

• User-defined partitioning

• Row-level Locking

• Distribution-aware transactions

• Partition-pruned index scans

• Real-time, 2-Phase Commit

• 1.2 sec TransactionInactive timeouts

• Commodity Hardware

• Scales to 48 nodes

• Supports on-disk columns

• SQL API

• C++/Java Native API

• C++ Event API

><HOPSFS & EPIPE 10

MySQL Cluster (NDB) to the rescue

• NewSQL (Relational) DB

• User-defined partitioning

• Row-level Locking

• Distribution-aware transactions

• Partition-pruned index scans

• Real-time, 2-Phase Commit

• 1.2 sec TransactionInactive timeouts

200 Million NoSQL Ops/sec

• Commodity Hardware

• Scales to 48 nodes

• Supports on-disk columns

• SQL API

• C++/Java Native API

• C++ Event API

><HOPSFS & EPIPE 11

HopsFS

NNs

 HopsFS /
 HDFS
 Clients

SbNN

Datanodes

ZooKeeper Nodes

HDFS
Clients

HDFS

M
et

ad
at

a
M

gm

Leader

DAL Driver

NDB

Fi
le

 B
lk

s

Journal Nodes

HopsFS

ANN

Datanodes

><HOPSFS & EPIPE 12

From Memory to Database

/root

2014

dir1

... ...

us

c.log

b.log

nydir1

...

...

Quota

INode

><HOPSFS & EPIPE 13

Apache NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

Journal Nodes

Client

><HOPSFS & EPIPE 13

Apache NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

Journal Nodes

Client

ConnectionList
Listener

(Nio Thread)

><HOPSFS & EPIPE 13

Apache NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

Journal Nodes

Client

Reader1 ReaderN…

ConnectionList

Call Queue

Listener
(Nio Thread)

ipc.server.read.threadpool.size
(default 1)

><HOPSFS & EPIPE 13

Apache NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

Journal Nodes

Client

Reader1 ReaderN…

Handler1 HandlerM

ConnectionList

Call Queue

Listener
(Nio Thread)

dfs.namenode.service.handlercount
(default 10)

ipc.server.read.threadpool.size
(default 1)

…

><HOPSFS & EPIPE 13

Apache NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

Journal Nodes

Client

Reader1 ReaderN…

Handler1 HandlerM

ConnectionList

Call Queue

Meta Data & In-Memory EditLogFSNameSystem Lock

Listener
(Nio Thread)

dfs.namenode.service.handlercount
(default 10)

ipc.server.read.threadpool.size
(default 1)

…

Handler1 HandlerM…

><HOPSFS & EPIPE 13

Apache NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

Journal Nodes

Client

Reader1 ReaderN…

Handler1 HandlerM

ConnectionList

Call Queue

Meta Data & In-Memory EditLogFSNameSystem Lock

EditLog Buffer

Listener
(Nio Thread)

dfs.namenode.service.handlercount
(default 10)

ipc.server.read.threadpool.size
(default 1)

…

Handler1 HandlerM…

><HOPSFS & EPIPE 13

Apache NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

Journal Nodes

Client

Reader1 ReaderN…

Handler1 HandlerM

ConnectionList

Call Queue

Meta Data & In-Memory EditLogFSNameSystem Lock

EditLog Buffer

EditLog1 EditLog2 EditLog3

Listener
(Nio Thread)

dfs.namenode.service.handlercount
(default 10)

ipc.server.read.threadpool.size
(default 1)

…

Handler1 HandlerM…

flush

><HOPSFS & EPIPE 13

Apache NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

Journal Nodes

Client

Reader1 ReaderN…

Handler1 HandlerM

ConnectionList

Call Queue

Meta Data & In-Memory EditLogFSNameSystem Lock

EditLog Buffer

EditLog1 EditLog2 EditLog3

Listener
(Nio Thread)

dfs.namenode.service.handlercount
(default 10)

ipc.server.read.threadpool.size
(default 1)

…

Handler1 HandlerM… Done RPCs

ackIdsflush

><HOPSFS & EPIPE 13

Apache NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

Journal Nodes

Client

Reader1 ReaderN…

Handler1 HandlerM

ConnectionList

Call Queue

Meta Data & In-Memory EditLogFSNameSystem Lock

EditLog Buffer

EditLog1 EditLog2 EditLog3

Listener
(Nio Thread)

Responder
(Nio Thread)

dfs.namenode.service.handlercount
(default 10)

ipc.server.read.threadpool.size
(default 1)

…

Handler1 HandlerM… Done RPCs

ackIdsflush

><HOPSFS & EPIPE 14

HopsFS NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

NDB

Client

DAL-Impl

><HOPSFS & EPIPE 14

HopsFS NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

NDB

Client

ConnectionList
Listener

(Nio Thread)

DAL-Impl

><HOPSFS & EPIPE 14

HopsFS NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

NDB

Client

Reader1 ReaderN…

ConnectionList

Call Queue

Listener
(Nio Thread)

ipc.server.read.threadpool.size
(default 1)

DAL-Impl

><HOPSFS & EPIPE 14

HopsFS NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

NDB

Client

Reader1 ReaderN…

Handler1 HandlerM

ConnectionList

Call Queue

Listener
(Nio Thread)

dfs.namenode.service.handlercount
(default 10)

ipc.server.read.threadpool.size
(default 1)

…

DAL-Impl

><HOPSFS & EPIPE 14

HopsFS NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

NDB

Client

Reader1 ReaderN…

Handler1 HandlerM

ConnectionList

Call Queue

Listener
(Nio Thread)

dfs.namenode.service.handlercount
(default 10)

ipc.server.read.threadpool.size
(default 1)

…

DAL-Impl
DAL API

><HOPSFS & EPIPE 14

HopsFS NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

NDB

Client

Reader1 ReaderN…

Handler1 HandlerM

ConnectionList

Call Queue

inodes block_infos replicas

Listener
(Nio Thread)

dfs.namenode.service.handlercount
(default 10)

ipc.server.read.threadpool.size
(default 1)

…

Handler1 HandlerM…

leases…

DAL-Impl
DAL API

><HOPSFS & EPIPE 14

HopsFS NameNode Internals
Client: mkdir, getblocklocations, createFile,…..

NameNode

NDB

Client

Reader1 ReaderN…

Handler1 HandlerM

ConnectionList

Call Queue

inodes block_infos replicas

Listener
(Nio Thread)

Responder
(Nio Thread)

dfs.namenode.service.handlercount
(default 10)

ipc.server.read.threadpool.size
(default 1)

…

Handler1 HandlerM…

Done RPCs

ackIds

leases…

DAL-Impl
DAL API

><HOPSFS & EPIPE 15

Fine grain Locking

/root

2014 archiveeu

dir1 dir n...dir2

...

us

a.log

se dir1 dir2

... ...

de c.log

b.log

dept

d1 d2

... ...

...

d0

dn

><HOPSFS & EPIPE 15

Fine grain Locking

/root

2014 archiveeu

dir1 dir n...dir2

...

us

a.log

se dir1 dir2

... ...

de c.log

b.log

dept

d1 d2

... ...

...

d0

dn

• Hierarchical Locking (Implicit Locking)

><HOPSFS & EPIPE 15

Fine grain Locking

/root

2014 archiveeu

dir1 dir n...dir2

...

us

a.log

se dir1 dir2

... ...

de c.log

b.log

dept

d1 d2

... ...

...

d0

dn

• Hierarchical Locking (Implicit Locking)

• Subtree Locking

><HOPSFS & EPIPE 16

Implicit Locking

/root

2014

dir1

... ...

us

c.log

b.log

nydir1

...

...

Quota

INode

><HOPSFS & EPIPE 16

Implicit Locking

/root

2014

dir1

... ...

us

c.log

b.log

nydir1

...

...

Quota

INode

><HOPSFS & EPIPE 16

Implicit Locking

/root

2014

dir1

... ...

us

c.log

b.log

nydir1

...

...

Quota

INode

><HOPSFS & EPIPE 17

Pluggable DBs: Data Abstraction Layer

NameNode
(Apache v2)

NDB-DAL-Impl
(GPL v2)

DAL API
(Apache v2)

><HOPSFS & EPIPE 17

Pluggable DBs: Data Abstraction Layer

NameNode
(Apache v2)

NDB-DAL-Impl
(GPL v2)

Other DB
(Other License)

DAL API
(Apache v2)

><HOPSFS & EPIPE 18

Spotify Workload

Op Name Percentage Op Name Percentage
append file 0.0% content summary 0.01%
mkdirs 0.02% set permissions 0.03% [26.3%⇤]
set replication 0.14% set owner 0.32 % [100%⇤]
delete 0.75% [3.5%⇤] create file 1.2%
rename 1.3% [0.03%⇤] add blocks 1.5%
list (listStatus) 9% [94.5%⇤] stat (fileInfo) 17% [23.3%⇤]
read (getBlkLoc) 68.73%

Table 1: Relative frequency of operations on a Spotify HDFS cluster.
List, read, and stat operations account for ⇡ 95% of the metadata op-
erations in the cluster.
⇤Of which, the relative percentage is on directories

NameNode on which to execute file system operations.
HopsFS clients periodically refresh the NameNode list,
enabling new NameNodes to join an operational cluster.
HDFS v2.x clients are fully compatible with HopsFS,
although they do not distribute operations over Name-
Nodes, as they assume there is a single active Name-
Node.

MySQL Cluster: NDB is the storage engine
for MySQL Cluster and it is a shared-nothing, in-
memory, auto-sharding, consistent, distributed, rela-
tional database [38]. NDB frequently checkpoints the
data and supports both NDB datanode and cluster level
recovery.

NDB horizontally partitions the tables among the
NDB datanodes. It also supports application defined par-
titioning (ADP) for the tables. The transaction coordina-
tors are located on all the NDB datanodes, enabling high
performance transactions between data shards. Distri-
bution aware transactions (DAT) are possible by provid-
ing a hint, based on the application defined partitioning
scheme, to start a transaction on the NDB datanode con-
taining the data read/updated by the transaction. In par-
ticular, single row read operations and partition pruned
index scans (scan operations in which a single data shard
participates) benefit from distribution aware transactions
as they can read all their data locally [77]. Incorrect hints
result in additional network traffic being incurred but oth-
erwise correct system operation.

NDB only supports read-committed transaction isola-
tion, which does not allow dirty reads but phantom and
fuzzy (non-repeatable) reads can happen in a transac-
tion [7]. NDB supports row level locks, exclusive (write)
locks, shared (read) locks, and read-committed locks.
HopsFS uses locks to serialize conflicting file system op-
erations.

3 Partitioning Scheme and Transactions
Metadata for hierarchical distributed file systems typi-
cally contains information on inodes, blocks, replicas,
quotas, leases and mappings (directories to files, files to
blocks, and blocks to replicas). When metadata is dis-
tributed, an application defined partitioning scheme is
needed to shard the metadata and a distributed consensus

Figure 2: (a) Shows the relative cost of different operations in NewSQL
database. (b) HopsFS avoids FTS and IS operations as the cost these
operation is relatively higher than PPIS, B, and PK operations.

protocol is required to ensure metadata integrity for op-
erations that cross shards. Quorum-based consensus pro-
tocols, such as Paxos, provide high performance within
a single shard, but are typically combined with transac-
tions, implemented using the two-phase commit proto-
col, for operations that cross shards, as in Megastore [6]
and Spanner [11]. File system operations in HopsFS are
implemented primarily using transactions and row-level
locks in MySQL Cluster to provide serializability [23]
for metadata operations.

The choice of partitioning scheme for the hierarchi-
cal namespace is a key design decision for distributed
metadata architectures. We base our partitioning scheme
on the expected relative frequency of HDFS operations
and the cost of different database operations that can be
used to implement the file system operations. Table 1
shows the relative frequency of selected HDFS opera-
tions in a workload generated by Hadoop applications
(Pig, Hive, HBase, MapReduce, Tez, Spark, and Giraph)
at Spotify. List, stat and file read operations alone ac-
count for ⇡ 95% of the operations in the HDFS cluster.
These statistics are similar to the published workloads for
Hadoop clusters at Yahoo [1], LinkedIn [53], and Face-
book [66]. Figure 2a shows the relative cost of different
database operations. We can see that the cost of a full
table scan or an index scan, in which all database shards
participate, is much higher than a partition pruned index
scan in which only a single database shard participates.
HopsFS implements common file system operations us-
ing only the low cost database operations, that is, primary
key read, batched primary key reads and partition pruned
index scans. For example, the read and directory list-
ing operations (see Table 3), are implemented using only
(batched) primary key lookups and partition pruned in-
dex scans. Index scans and full table scans were avoided,
where possible, as they touch all database shards and
scale poorly.

3.1 HopsFS Partitioned Metadata
In HopsFS, the file system metadata is stored in tables
where a directory inode is represented by a single row in
the Inode table. File inodes, however, have more asso-
ciated metadata, such as a set of blocks, block locations,
and checksums that are stored in separate tables, with

3

Relative frequency of operations on a Spotify HDFS cluster. List, read, and stat
operations account for ≈ 95% of the metadata operations in the cluster. 

*Of which, the relative percentage is on directories

[Niazi, Salman, et al. "HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases." arXiv preprint (2016)]

><HOPSFS & EPIPE 19

To Infinity and Beyond

NDB Setup: 8 Nodes using Xeon E5-2620 2.40GHz Processors and 10GbE.
NameNodes: Xeon E5-2620 2.40GHz Processors machines and 10GbE.

0

100k

200k

300k

400k

500k

600k

700k

1 6 11 16 21 26 31 36 41 46

op
s/

se
c

Number of Namenodes

HopsFS-Spotify
HDFS-Spotify

~8.5X

><HOPSFS & EPIPE 19

To Infinity and Beyond

NDB Setup: 8 Nodes using Xeon E5-2620 2.40GHz Processors and 10GbE.
NameNodes: Xeon E5-2620 2.40GHz Processors machines and 10GbE.

0

100k

200k

300k

400k

500k

600k

700k

1 6 11 16 21 26 31 36 41 46

op
s/

se
c

Number of Namenodes

HopsFS-Spotify
HDFS-Spotify

~8.5X

><HOPSFS & EPIPE 19

To Infinity and Beyond

NDB Setup: 8 Nodes using Xeon E5-2620 2.40GHz Processors and 10GbE.
NameNodes: Xeon E5-2620 2.40GHz Processors machines and 10GbE.

0

100k

200k

300k

400k

500k

600k

700k

1 6 11 16 21 26 31 36 41 46

op
s/

se
c

Number of Namenodes

HopsFS-Spotify
HDFS-Spotify

~8.5X

><HOPSFS & EPIPE 19

To Infinity and Beyond

NDB Setup: 8 Nodes using Xeon E5-2620 2.40GHz Processors and 10GbE.
NameNodes: Xeon E5-2620 2.40GHz Processors machines and 10GbE.

0

100k

200k

300k

400k

500k

600k

700k

1 6 11 16 21 26 31 36 41 46

op
s/

se
c

Number of Namenodes

HopsFS-Spotify
HDFS-Spotify

~8.5X

><HOPSFS & EPIPE 20

Bigger Clusters

 0
 20
 40
 60
 80

 100
 120
 140
 160

0.25 0.50 0.75 1.00
 50

 100

 150

 200

 250

 300

H
op

sF
S

op
 ti

m
e

(s
ec

)

H
D

FS
 o

p
tim

e
(m

s)

No of files in a directory (million)

HDFS rename
HDFS delete

HopsFS rename
HopsFS delete

Figure 7: Performance of rename and delete operations on large direct-
ories. Note, the different time scales for HDFS and HopsFS. HopsFS is
an order of magnitude slower as it reads all the descendant inodes of the
subtree from an external database.

the memory. However, due to the low frequency of such
operations in typical industrial workloads (see Table 1),
we think it is an acceptable trade-off for the higher per-
formance of common file system operations in HopsFS.

7.3 Metadata (Namespace) Scalability
In HDFS, as the entire namespace metadata must fit on
the heap of single JVM, the data structures are highly op-
timized to reduce the memory footprint [62]. In HDFS,
a file with two blocks that are replicated three ways re-
quires 448 + L bytes of metadata1 where L represents the
filename length. If the file names are 10 characters long,
then a 1 GB JVM heap can store 2.3 million files. In real-
ity the JVM heap size has to be significantly larger to ac-
commodate secondary metadata, thousands of concurrent
RPC requests, block reports that can each be tens of mega-
bytes in size, as well as other temporary objects.

Number of Files
Memory HDFS HopsFS
1 GB 2.3 million 0.44 million
50 GB 115 million 22 million
100 GB 230 million 44 million
200 GB 460 million 88 million
500 GB Does Not Scale 220 million
1 TB Does Not Scale 440 million
24 TB Does Not Scale 10.8 billion

Table 2: HDFS and HopsFS Metadata Scalability.

Migrating the metadata to a database causes an expan-
sion in the amount of memory required to accommod-
ate indexes, primary/foreign keys and padding. In order
to calculate the size of each entity we use a tool called
sizer [40]. In HopsFS the same file described above takes
2420 bytes if the metadata is replicated twice. For a
highly available deployment with an active and standby
namenodes for HDFS, you will need twice the amount of
memory, thus, HopsFS requires ⇡ 2 times more memory
than HDFS to store metadata that is highly available.

Table 2 shows the metadata scalability of HDFS and
HopsFS. NDB supports up to 48 datanodes, which allows
it to scale up to 24 TB of data in a cluster with 512 GB
RAM on each NDB datanode. HopsFS can store up to

1These size estimates are for HDFS version 2.0.4 from which
HopsFS was forked. Newer version of HDFS require additional memory
for new features such as snapshots and extended attributes.

10.8 billion files using 24 TB of metadata, which is an
order of magnitude higher (24 times) than HDFS.

7.4 Industrial Workload Experiments
We benchmarked HopsFS using workloads based on oper-
ational traces from Spotify that operates a Hadoop cluster
consisting of 1600+ nodes containing 60 petabytes of
data. The namespace contains 13 million directories and
218 million files where each file on average contains 1.3
blocks. The Hadoop cluster at Spotify runs on average
forty thousand jobs of different applications, such as, Pig,
Hive, HBase, MapReduce, Tez, Spark, and Giraph every
day. The file system workload generated by these applic-
ation is summarized in Table 1, which shows the relative
frequency of HDFS operations. At Spotify the average
file path depth is 7 and average inode name length is 34
characters. On average each directory contains 16 files
and 2 sub-directories. There are 289 million blocks stored
on the datanodes. We use these statistics to generate file
system workloads that approximate HDFS usage in pro-
duction at Spotify.

7.4.1 Scalability Argument
Figure 8 shows that, for our industrial workload, HopsFS
delivers 2.6 times the throughput of HDFS with 12 name-
nodes and 8 NDB nodes. Even for 2-node NDB deploy-
ments, HopsFS can outperform HDFS and scale linearly
up to 8 namenodes.

As discussed before in medium to large Hadoop
clusters 5 to 8 servers are required to provide high avail-
ability for HDFS. With 6 servers, HopsFS delivers higher
throughput than HDFS, increasing further as more name-
nodes are added to the system.

For higher numbers of namenodes, HopsFS’ through-
put levels off because NDB becomes overloaded. By
increasing the number of NDB datanode instances to 4,
HopsFS increases throughput up to 11 namenodes, and
by increasing the number of NDB datanode instances to
8, HopsFS scales up to at least 12 namenodes. The 2-
node NDB cluster has a similar performance as the 4-node
NDB cluster because each NDB datanode in 2-node NDB
cluster holds the complete copy of the entire metadata,
which improves the performance of transactions as all the

20K

40K

60K

80K

100K

120K

140K

1 2 3 4 5 6 7 8 9 10 11 12

op
s/

se
c

Number of Namenodes

HopsFS with 2 NDB Nodes
HopsFS with 4 NDB Nodes
HopsFS with 8 NDB Nodes

HDFS (Using 5 Server)

Figure 8: HopsFS and HDFS throughput for our industrial workload.

9

><HOPSFS & EPIPE 21

Tinker Friendly Metadata

><HOPSFS & EPIPE 21

Tinker Friendly Metadata

• The Database (NDB) is the single source of truth

><HOPSFS & EPIPE 21

Tinker Friendly Metadata

• The Database (NDB) is the single source of truth

• Extending INodes (files/directories)

><HOPSFS & EPIPE 21

Tinker Friendly Metadata

• The Database (NDB) is the single source of truth

• Extending INodes (files/directories)

• Adding a new table with a foreign key to the nodes
table

><HOPSFS & EPIPE 21

Tinker Friendly Metadata

• The Database (NDB) is the single source of truth

• Extending INodes (files/directories)

• Adding a new table with a foreign key to the nodes
table

• Attaching metadata to a file/directory

><HOPSFS & EPIPE 21

Tinker Friendly Metadata

• The Database (NDB) is the single source of truth

• Extending INodes (files/directories)

• Adding a new table with a foreign key to the nodes
table

• Attaching metadata to a file/directory

• Schema-less

><HOPSFS & EPIPE 21

Tinker Friendly Metadata

• The Database (NDB) is the single source of truth

• Extending INodes (files/directories)

• Adding a new table with a foreign key to the nodes
table

• Attaching metadata to a file/directory

• Schema-less

• Schema-based

><HOPSFS & EPIPE 22

Schema-less Metadata

><HOPSFS & EPIPE 22

Schema-less Metadata

inodeID Name parentId
1 / 0
2 Users 1
3 alice.txt 2

><HOPSFS & EPIPE 22

Schema-less Metadata

inodeID Name parentId
1 / 0
2 Users 1
3 alice.txt 2

attach /Users/alice.txt ’{“age” : 20, “gender” : “female”, “about”: “I am alice”}’

><HOPSFS & EPIPE 22

Schema-less Metadata

inodeID Name parentId
1 / 0
2 Users 1
3 alice.txt 2

attach /Users/alice.txt ’{“age” : 20, “gender” : “female”, “about”: “I am alice”}’

inodeID metadata

3 {“age” : 20, “gender” : “female”,
“about”: “I am alice”}

><HOPSFS & EPIPE 22

Schema-less Metadata

inodeID Name parentId
1 / 0
2 Users 1
3 alice.txt 2

attach /Users/alice.txt ’{“age” : 20, “gender” : “female”, “about”: “I am alice”}’

inodeID metadata

3 {“age” : 20, “gender” : “female”,
“about”: “I am alice”}

><HOPSFS & EPIPE 23

Schema-based Metadata

><HOPSFS & EPIPE 23

Schema-based Metadata

Template

><HOPSFS & EPIPE 23

Schema-based Metadata

Template

><HOPSFS & EPIPE 23

Schema-based Metadata

Template TemplateTemplateTable

><HOPSFS & EPIPE 23

Schema-based Metadata

Template TemplateTemplateTable

><HOPSFS & EPIPE 23

Schema-based Metadata

Template TemplateTemplateTable
ColumnColumnColumnColumnColumnColumn

><HOPSFS & EPIPE 23

Schema-based Metadata

Template TemplateTemplateTable
ColumnColumnColumnColumnColumnColumn

INode

><HOPSFS & EPIPE 23

Schema-based Metadata

Template TemplateTemplateTable
ColumnColumnColumnColumnColumnColumn

INode

><HOPSFS & EPIPE 23

Schema-based Metadata

Template TemplateTemplateTable
ColumnColumnColumnColumnColumnColumn

INode

><HOPSFS & EPIPE 23

Schema-based Metadata

Template TemplateTemplateTable
ColumnColumnColumnColumnColumnColumn

INode Metadata Row

><HOPSFS & EPIPE 23

Schema-based Metadata

Template TemplateTemplateTable
ColumnColumnColumnColumnColumnColumn

INode Metadata Row

><HOPSFS & EPIPE 24

Searching through the Namespace

><HOPSFS & EPIPE 24

Searching through the Namespace

• hdfs -find

><HOPSFS & EPIPE 24

Searching through the Namespace

• hdfs -find

• limited

><HOPSFS & EPIPE 24

Searching through the Namespace

• hdfs -find

• limited

• inefficient by design

><HOPSFS & EPIPE 24

Searching through the Namespace

• hdfs -find

• limited

• inefficient by design

• Pig/MapReduce

><HOPSFS & EPIPE 24

Searching through the Namespace

• hdfs -find

• limited

• inefficient by design

• Pig/MapReduce

• NameNode is a critical point, avoid overloading

><HOPSFS & EPIPE 24

Searching through the Namespace

• hdfs -find

• limited

• inefficient by design

• Pig/MapReduce

• NameNode is a critical point, avoid overloading

• SQL Query on NDB

><HOPSFS & EPIPE 24

Searching through the Namespace

• hdfs -find

• limited

• inefficient by design

• Pig/MapReduce

• NameNode is a critical point, avoid overloading

• SQL Query on NDB

• One Size does not fit all

><HOPSFS & EPIPE 25

Polyglot Persistence: the Right Tool for the Job

><HOPSFS & EPIPE 26

Monolithic vs Polyglot Persistence

[http://martinfowler.com/]

><HOPSFS & EPIPE 27

Asynchronous Update of the Metadata

Eventual Consistency for Metadata.
Metadata Integrity maintained by  

Asynchronous Replication and Metadata Immutability.

Files
Directories
Metadata

Search
Indexes

><HOPSFS & EPIPE 27

Asynchronous Update of the Metadata

Eventual Consistency for Metadata.
Metadata Integrity maintained by  

Asynchronous Replication and Metadata Immutability.

Files
Directories
Metadata

Search
Indexes

Database

><HOPSFS & EPIPE 27

Asynchronous Update of the Metadata

Eventual Consistency for Metadata.
Metadata Integrity maintained by  

Asynchronous Replication and Metadata Immutability.

Files
Directories
Metadata

Search
Indexes

Database

><HOPSFS & EPIPE 27

Asynchronous Update of the Metadata

Eventual Consistency for Metadata.
Metadata Integrity maintained by  

Asynchronous Replication and Metadata Immutability.

Files
Directories
Metadata

Search
Indexes

DatabaseElasticsearch

><HOPSFS & EPIPE 27

Asynchronous Update of the Metadata

Eventual Consistency for Metadata.
Metadata Integrity maintained by  

Asynchronous Replication and Metadata Immutability.

Files
Directories
Metadata

Search
Indexes

DatabaseElasticsearch

><HOPSFS & EPIPE 27

Asynchronous Update of the Metadata

Eventual Consistency for Metadata.
Metadata Integrity maintained by  

Asynchronous Replication and Metadata Immutability.

Files
Directories
Metadata

Search
Indexes

DatabaseElasticsearch

><HOPSFS & EPIPE 27

Asynchronous Update of the Metadata

Eventual Consistency for Metadata.
Metadata Integrity maintained by  

Asynchronous Replication and Metadata Immutability.

Files
Directories
Metadata

Search
Indexes

DatabaseElasticsearch

ePipe

><HOPSFS & EPIPE 27

Asynchronous Update of the Metadata

Eventual Consistency for Metadata.
Metadata Integrity maintained by  

Asynchronous Replication and Metadata Immutability.

Files
Directories
Metadata

Search
Indexes

DatabaseElasticsearch one-way replication

ePipe

><HOPSFS & EPIPE 27

Asynchronous Update of the Metadata

Eventual Consistency for Metadata.
Metadata Integrity maintained by  

Asynchronous Replication and Metadata Immutability.

Files
Directories
Metadata

Search
Indexes

DatabaseElasticsearch one-way replication
immutable data

ePipe

><HOPSFS & EPIPE 28

HopsFS | ElasticSearch

 MySQL
Cluster

Elastic
HandlerTailer

Table Unit

Batcher Reader

ePipe

 Elastic
Search
Cluster

next 29
Supporting Project-Level

Multi-Tenancy

How can we introduce
GitHub-style projects to Hadoop?

><HOPSFS & EPIPE 30

Tutorial

><HOPSFS & EPIPE 30

Tutorial

• Karamel Automated Installation

http://www.hops.io/?q=boss
http://52.210.205.125:8080/hopsworks/
http://52.209.143.68:8080/hopsworks/
http://52.18.186.135:8080/hopsworks/

><HOPSFS & EPIPE 30

Tutorial

• Karamel Automated Installation

• http://www.hops.io/?q=boss

http://www.hops.io/?q=boss
http://52.210.205.125:8080/hopsworks/
http://52.209.143.68:8080/hopsworks/
http://52.18.186.135:8080/hopsworks/

><HOPSFS & EPIPE 30

Tutorial

• Karamel Automated Installation

• http://www.hops.io/?q=boss

• HopsWorks Clusters

http://www.hops.io/?q=boss
http://52.210.205.125:8080/hopsworks/
http://52.209.143.68:8080/hopsworks/
http://52.18.186.135:8080/hopsworks/

><HOPSFS & EPIPE 30

Tutorial

• Karamel Automated Installation

• http://www.hops.io/?q=boss

• HopsWorks Clusters

• http://52.210.205.125:8080/hopsworks/

http://www.hops.io/?q=boss
http://52.210.205.125:8080/hopsworks/
http://52.209.143.68:8080/hopsworks/
http://52.18.186.135:8080/hopsworks/

><HOPSFS & EPIPE 30

Tutorial

• Karamel Automated Installation

• http://www.hops.io/?q=boss

• HopsWorks Clusters

• http://52.210.205.125:8080/hopsworks/

• http://52.209.143.68:8080/hopsworks/

http://www.hops.io/?q=boss
http://52.210.205.125:8080/hopsworks/
http://52.209.143.68:8080/hopsworks/
http://52.18.186.135:8080/hopsworks/

><HOPSFS & EPIPE 30

Tutorial

• Karamel Automated Installation

• http://www.hops.io/?q=boss

• HopsWorks Clusters

• http://52.210.205.125:8080/hopsworks/

• http://52.209.143.68:8080/hopsworks/

• http://52.18.186.135:8080/hopsworks/

http://www.hops.io/?q=boss
http://52.210.205.125:8080/hopsworks/
http://52.209.143.68:8080/hopsworks/
http://52.18.186.135:8080/hopsworks/

><HOPSFS & EPIPE 31

Conclusions

• Hops is a next-generation distribution of Hadoop.

• HopsWorks is a frontend to Hops that supports multi-
tenancy, free-text search, interactive analytics with
Zeppelin/Flink/Spark, and batch jobs.

• Looking for contributors/committers

• Check out our github (github.com/hopshadoop)

http://github.com/hopshadoop

next 32Questions

next 33

next 34Karamel

><HOPSFS & EPIPE 35

Automated Installation

• Vagrant/Chef to spin up on a single host

• Karamel/Chef to deploy on AWS/GCE/OpenStack or on-premises

name: HopsWorks
ec2:
 type: m3.medium
cookbooks:
 hadoop: github: "hopshadoop/hopsworks-chef" version: "v0.1"
groups:
 ui:
 size: 1
 recipes:
 - hopsworks
metadata:
 size: 2
 recipes:
 - hops::nn
 - hops::rm
datanodes:
 size: 50
 recipes:
 - hops::dn
 - hops::nm

next 36HopsWorks

><HOPSFS & EPIPE 37

Problem: Sensitive Data needs its own Cluster

NSA DataSet

has access to

Alice

><HOPSFS & EPIPE 37

Problem: Sensitive Data needs its own Cluster

NSA DataSet

has access to

User DataSet

give access toAlice

><HOPSFS & EPIPE 37

Problem: Sensitive Data needs its own Cluster

NSA DataSet

has access to

User DataSet

give access to

Alice can copy/cross-link between data sets

Alice

><HOPSFS & EPIPE 37

Problem: Sensitive Data needs its own Cluster

NSA DataSet

has access to

User DataSet

give access to

Alice can copy/cross-link between data sets

Alice has only one Kerberos Identity.
Neither attribute-based access control nor dynamic roles supported in Hadoop.

Alice

><HOPSFS & EPIPE 38

Solution: Project-Specific UserIDs

Project NSA

Project Users
Member of

NSA__Alice

Users__Alice

Member of

><HOPSFS & EPIPE 38

Solution: Project-Specific UserIDs

Project NSA

Project Users
Member of

NSA__Alice

Users__Alice

Member of

HDFS enforces 
access control

><HOPSFS & EPIPE 38

Solution: Project-Specific UserIDs

Project NSA

Project Users
Member of

NSA__Alice

Users__Alice

Member of

HDFS enforces 
access control

How can we share DataSets between Projects?

><HOPSFS & EPIPE 39

Sharing DataSets between Projects

Project NSA

Project Users
Member of

NSA__Alice

Users__Alice

Member of

><HOPSFS & EPIPE 39

Sharing DataSets between Projects

Project NSA

Project Users
Member of

DataSetowns

NSA__Alice

Users__Alice

Member of

><HOPSFS & EPIPE 39

Sharing DataSets between Projects

Project NSA

Project Users
Member of

DataSetowns

Add members of Project  
NSA to the DataSet group

NSA__Alice

Users__Alice

Member of

><HOPSFS & EPIPE 40

HopsWorks enforces dynamic Roles

Alice@gmail.com

NSA__Alice

Authenticate

Users__Alice

HopsWorks

HopsFS

HopsYARN

Projects

Kafka

><HOPSFS & EPIPE 40

HopsWorks enforces dynamic Roles

Alice@gmail.com

NSA__Alice

Authenticate

Users__Alice

HopsWorks

HopsFS

HopsYARN

Projects

Kafka

><HOPSFS & EPIPE 40

HopsWorks enforces dynamic Roles

Alice@gmail.com

NSA__Alice

Authenticate

Users__Alice

HopsWorks

HopsFS

HopsYARN

Projects

Kafka

><HOPSFS & EPIPE 40

HopsWorks enforces dynamic Roles

Alice@gmail.com

NSA__Alice

Authenticate

Users__Alice

HopsWorks

HopsFS

HopsYARN

Projects

Kafka

><HOPSFS & EPIPE 40

HopsWorks enforces dynamic Roles

Alice@gmail.com

NSA__Alice

Authenticate

Users__Alice

HopsWorks

HopsFS

HopsYARN

Projects
Secure

Impersonation

Kafka

X.509
Certificates

><HOPSFS & EPIPE 41

X.509 Certificate per project specific user

Alice@gmail.com

Authenticate

Add/Del
Users

Distributed
Database

Insert/Remove CertsProject
Mgr

Root
CA

Services
Hadoop
Spark
Kafka
etc

Cert Signing
Requests

><HOPSFS & EPIPE 42

Project

• A project is a collection
of

• Members

• HDFS DataSets

• Kafka Topics

• Notebooks, Jobs

• A project has an owner

• A project has quotas

project
dataset 1

dataset N

Topic 1

Topic N

Kafka

HDFS

><HOPSFS & EPIPE 43

Project Roles

•Data Owner Privileges

- Import/Export data

- Manage Membership

- Share DataSets, Topics

•Data Scientist Privileges

- Write and Run code

><HOPSFS & EPIPE 43

Project Roles

•Data Owner Privileges

- Import/Export data

- Manage Membership

- Share DataSets, Topics

•Data Scientist Privileges

- Write and Run code
We delegate administration of privileges to users

