

BIG DATA AND SUPERCOMPUTING: FROM COLLISION TO CONVERGENCE

Arie Shoshani Lawrence Berkeley National Laboratory

September 4, 2015

A. Shoshani

The Scalable Data-management, Analysis, and Visualization (SDAV) Institute 2012-2017

Arie Shoshani (PI)

Co-Principal Investigators from:

Laboratories ANL LBNL LLNL ORNL LANL SNL Kitware (Industry) Universities GTech NCSU NWU OSU UCD Rutgers UUtah

Example of Big Data in Science

Large Hadron Collider: to find the "God" particle (Higgs boson)

- sensors capable of 140PB/s
- reduce 99.99% of data by hardware triggers
- Keep 15 PB per year
- 27 km tunnel
- ~10,000 superconducting magnets
- Operating temperature 1.9 Kelvin
- Construction cost: US\$9Billion
- Power consumption: ~120 MW

More Big Data at DOE

- Experimental Data
 - Light Sources
 - Nanoscience Centers
 - Neutron Facilities
 - The Joint Genome Institute (JGI)
 - Systems Biology Knowledgebase
 - The Environmental Molecular Sciences Laboratory (EMSL)
 - **Observational Data**
 - Cosmological sky surveys
 - Cosmic microwave background telescopes
 - Neutrino detectors
 - Climate Atmospheric Radiation Measurements (ARM)

Advanced Light Source - ANL

Advanced Photon Source - ANL

Nano facility - BNL

Light Sources – faster than moore's law

Major light source facilities at DOE labs

The National Synchrotron Light Source II (NSLS-II) at BNL •

Rate (GB/s)

- The Advanced Photon Source (APS) at ANL •
- The Advanced Light Source • (ALS) at LBNL
- The Linac Coherent Light • Source (LCLS) at SLAC
- The Stanford Synchrotron • **Radiation Lightsource** (SSRL) at SLAC.
- **Higher resolution** and faster speed

source: D. Parkinson, LBNL

Leadership System Architectures

High-level diagram of 10 Pflop IBM Blue Gene/Q system at Argonne Leadership Computing Facility

Courtesy: Rob Ross, ANL

A. Shoshani

Data Volume Explosion: What Can be Done?

Perform some data analysis and visualization on simulation machine (in-situ) Reduce Data and prepare data for further analysis (in-situ)

Data Analysis in Scientific Domains

- Two fundamental aspects
 - Pattern matching: Perform analysis tasks for finding known or expected patterns
 - Pattern discovery: Iterative exploratory analysis processes of looking for unknown patterns or features in the data

Example of pattern matching in scientific domains

- Finding & tracking of combustion flame fronts
 - Cell identification: Identify all cells that satisfy conditions: "600 < Temperature < 700 AND HO2-concentr. > 10⁻⁷"
 - Region growing: connect neighboring cells into regions
 - Region tracking: track the evolution of the features through time

3D simulations: 1000x1000x1000, 1000 time steps = 10^{12} cells, 20 - 50 variables each cell. 400 TBs dataset.

•

Example of pattern discovery in scientific domains

Feature Extraction and Tracking in Fusion Images

- National Spherical Torus Experiment (NSTX) – in PPPL (Tokomak)
- Images of experiment contain "blobs"
- A blob is a coherent structure in the image that carries heat and energy from the center of the torus to the wall
- Analysis required
 - Remove the quiescent background intensity
 - Remove ambient background intensity
 - Use image processing techniques to identify and track blobs over time

ADIOS: Adaptable I/O System (ORNL)

- Overview: service-oriented architecture:
 - Allows plug-ins for different I/O implementations
 - Abstracts the API from the method used for I/ O
- Simple API, almost as easy as F90 write statement
- Synchronous and asynchronous transports supported with no code changes
- Change I/O method by changing XML file only
- ADIOS buffers data
- ADIOS allows in situ optimization of I/O (e.g. Aggregated read/write)

Contact: Scott Klasky, ORNL

What else can be done when capturing I/O

Code coupling with DataSpaces

- Virtual shared space
- Constructed on-the-fly on staging nodes
 - Indexes data for quick access and retrieval
 - Provides asynchronous coordination and interaction and realizes the shared-space abstraction
- In-space (online) data transformation and manipulations
- Decentralized data analysis in-the-space

- Code Coupling: get, put, publish, subscribe service
- In transit data movement and workflow
 A. Shoshani
 management

Real-time monitoring on a Dashboard

- Time-step data is captured and processed by a workflow system
- Movies generated by a workflow
- Interactive vector plotting

Imbed FastBit indexing to find regions of interest

- Set of regions with high electromagnetic potential in a torus modeled by GTC
- Achieved speed up of 500-900 fold on magnetic coordinates

Contact: Scott Klasky

The need for selection of subsets based on content

Combustion simulation: 1000x1000x1000 mesh with 100s of chemical species over 1000s of time steps – 10^{14} data values

- This is an image of a <u>single</u> variable (temperature)
- What's needed is search over multiple variables, such as:

Temperature > 1000 AND pressure > 106 AND HO2 > 10⁻⁷ AND HO2 > 10⁻⁶

Challenges

- Multi-variable queries from a subset of variables
- □ Search over numerical values
- □ Identify large number of regions

FastBit properties – highly efficient and compact

Main idea:

- Invented specialized compression methods (was patented) that:
 - Can perform logical operations directly on compressed bitmaps
 - Excels in support of multi-variable queries
 - Can partition and merge bitmaps without decompression essential for parallelization of indexes

FastBit takes advantage of append only data to achieve:

- Search speed by 10x 100x than best known bitmap indexing methods
- On average about 1/3 of data volume compared to 2-3 times in common indexes
 because of compression method
- Proven to be theoretically optimal data search time is proportional to size of the result

Usage

- In multiple scientific application in DOE
- Embedded into in situ frameworks
- Thousands of downloads around the world (open source under source forge), including commercial companies

Flame Front Tracking with FastBit

Flame front identification can be specified as a query, efficiently executed for multiple timesteps with FastBit.

Cell identification

Identify all cells that satisfy user specified conditions: "600 < Temperature < 700 AND HO₂concentr. > 10⁻⁷"

Region growing Connect neighboring cells into regions

Region tracking

Track the evolution of the features through time

Query-Driven Visualization: Laser Plasma Accelerator Modeling

Beam Selection

Parallel coordinates view of t = 12

Grey particles represent initial selection $(px > 2^*10^9)$

Red particles represent "focus particles" in first wake period following pulse $(px > 4.856*10^{10}) \&\& (x > 5.649*10^{-4})$

Volume rendering of plasma density with focus particles included in red (t = 12)

Helps locate beam within wake

Impact

Enable for the first time detailed analysis of massive particle dataset of unprecedented size in real-time

Brute-force algorithm is quadratic (taking 5 minutes on 0.5 mil particles), FastBit time is linear in the number of results (takes 0.3 s, 1000 X speedup)

A. Shosham 00 X speedup)

Contacts: Wes Bethel, John Wu

Some panel questions and some answers

- How should HPC change to meet its Big Data needs?
 - HPC already has to deal with Big Data!
 - In-situ data processing, analysis and visualization is essential
- What are the architecture tradeoffs: filesystems vs. object stores?
 - Most scientific data is now in filesytems (Luster, GPFS)
 - Challenge how to bridge the gap
- What are the workflow requirements
 - In-memory workflow is essential
 - Automated metadata and provenance is essential
- Can the HPC and Big Data communities learn from each other?
 - Yes, especially for analysis tasks