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. 27 km tunnel

. Construction cost:

Example of Big Data in Science

Large Hadron
Collider: to find the

“God” particle
(Higgs boson)

. sensors capable of 140PB/s

- reduce 99.99% of data by
hardware triggers

Keep 15 PB per year

- ~10,000 superconducting
magnets

- Operating temperature 1.9 Kelvin

US$9Billion
- Power consumption: ~120 MW
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More Big Data at DOE

. Experimental Data
- Light Sources
- Nanoscience Centers
- Neutron Facilities
- The Joint Genome Institute (JGI)
- Systems Biology Knowledgebase
- The Environmental Molecular
Sciences Laboratory (EMSL)
. Observational Data
- Cosmological sky surveys

- Cosmic microwave background
telescopes

« Neutrino detectors

- Climate Atmospheric Radiation
Measurements (ARM)

Nano facility - BNL
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Light Sources — faster than moore’s law

Major light source facilities at DOE labs
The National Synchrotron Light Source Il (NSLS-II) at BNL
The Advanced Photon Source (APS) at ANL

The Advanced Light Source

(ALS) at LBNL

The Linac Coherent Light
Source (LCLS) at SLAC

The Stanford Synchrotron
Radiation Lightsource
(SSRL) at SLAC.

Higher resolution
and faster speed

source: D. Parkinson, LBNL
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Leadership System Architectures
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High-level diagram of 10 Pflop IBM Blue Gene/Q system at Argonne Leadership Computing Facility
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Data Volume Explosion: What Can be Done?

Perform some data analysis and visualization on simulation machine (in-situ)
Reduce Data and prepare data for further analysis (in-situ)

Simulation Site Analysis Site (i)

Analysis
Machine

Simulation Machine
+ Data Reduction and Indexing
+ Analysis and Visualization
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Iterate
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Data Analysis in Scientific Domains

. Two fundamental aspects

Pattern matching: Perform analysis tasks for finding known or

expected patterns

Pattern discovery: Iterative exploratory analysis processes of

looking for unknown patterns or features in the data
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Example of pattern matching in scientific domains

Finding & tracking of combustion flame fronts
Cell identification: Identify all cells that satisfy conditions:
“600 < Temperature < 700 AND HO2-concentr. > 107
Region growing: connect neighboring cells into regions

Region tracking: track the evolution of the features through
time

3D simulations: 1000x1000x1000, 1000 time steps = 102 cells,
20 — 50 variables each cell. 400 TBs dataset.
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Example of pattern discovery in scientific domains

Feature Extraction and Tracking
In Fusion Images

National Spherical Torus Experiment

Images of experiment contain “blobs”

A blob is a coherent structure in the
image that carries heat and energy from
the center of the torus to the wall

Denoised

Analysis required original
 Remove the quiescent background
intensity
* Remove ambient background o
intensity

Use image processing techniques to
identify and track blobs over time

Detection
of blobs

A. Shoshani Contact: Chandrika Kamath, LLNL



ADIOS: Adaptable I/0 System (ORNL)

« QOverview: service-oriented architecture:

External |
« Allows plug-ins for different I/O |{;‘(§,‘,?_°'f?,§ l

Implementations

Scientific codes ‘

* Abstracts the API from the method used for |/

O/l XISOd

- Simple API, almost as easy as F90 write |E|.E

statement

- Synchronous and asynchronous transports
supported with no code changes

- Change I/0O method by changing XML file only

- ADIOS buffers data

- ADIOS allows in situ optimization of I/O
(e.g. Aggregated read/write)

A. Shoshani
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What else can be done when capturing I/O

Real-time monitoring on a Dashboard
« Time-step data is captured and processed by a

workflow system

Code coupling with DataSpaces

Virtual shared space
Constructed on-the-fly on staging nodes * Movies _generated by 2 workflow
Indexes data for quick access and retrieval MITE?S'VG vector plotting

Provides asynchronous coordination and
interaction and realizes the shared-space

abstraction
In-space (online) data transformation and
manipulations

Decentralized data analysis in-the-space
data

bje
XGCO data DataSpaces M3D-OMP
Kinetic code = quilibrium solve
w7 O
“server O
O data on g o . . .
data Imbed FastBit indexing to find regions of interest
disgnistic > N ELITE + Set of regions with high electromagnetic potential
R Shach in a torus modeled by GTC
— » Achieved speed up of 500-900 fold on magnetic coordinates

Code Coupling: get, put, publish, subscribe

service

In transit data movement and workflow

A. Shoshani
manaaement
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The need for selection of subsets based on content

Combustion simulation: 1000x1000x1000 mesh with 100s of chemical species over
1000s of time steps — 10'* data values

L This is an image of a single variable
(temperature)

L What’s needed is search over
multiple variables, such as:

Temperature > 1000
AND pressure > 106
AND HO2 > 107 AND HO2 > 10-¢

O Challenges

L Multi-variable queries from a
subset of variables

L Search over numerical values

O Identify large number of regions

A. Shoshani



FastBit properties — highly efficient and compact

Main idea:

* Invented specialized compression methods (was patented) that:
- Can perform logical operations directly on compressed bitmaps
- Excels in support of multi-variable queries

- Can partition and merge bitmaps without decompression — essential for parallelization
of indexes

FastBit takes advantage of append only data to achieve:
« Search speed by 10x — 100x than best known bitmap indexing methods

« On average about 1/3 of data volume compared to 2-3 times in common indexes
because of compression method

* Proven to be theoretically optimal — data search time is proportional to size
of the result

Usage
* |In multiple scientific application in DOE
« Embedded into in situ frameworks

« Thousands of downloads around the world (open source under
source forge), including commercial companies

A. Shoshani Contacts: John Wu, Arie Shoshani



Flame Front Tracking with FastBit

Flame front identification can be specified as a query,
efficiently executed for multiple timesteps with FastBit.

Cell identification
Identify all cells that satisfy
user specified conditions:
“600 < Temperature <700
AND HO,concentr. > 10-7”

em %\9/9 gig*r@ 229099

| o T TTQ Region growing

T 1 Connect neighboring cells
into regions

Region tracking

Track the evolution of the
features through time

A. Shoshani Contacts: John Wu, Arie Shoshani



Query-Driven Visualization:
Laser Plasma Accelerator Modeling

Beam Selection
Parallel coordinates view of t = 12
Grey particles represent initial selection
(px > 2*109)
Red particles represent “focus particles” in first [l ol ol oIk
wake period following pulse Sy O
(px > 4.856*1070) && (x > 5.649*104)
Volume rendering of plasma density with focus
particles included in red (t = 12)

Helps locate beam within wake

Impact

Enable for the first time detailed analysis of
massive particle dataset of unprecedented
size in real-time

Brute-force algorithm is quadratic (taking 5

minutes on 0.5 mil particles), FastBit time is
linear in the number of results (takes 0.3 s,

A shosh@00 X Speedup) Contacts: Wes Bethel, John Wu




Some panel questions and some answers

* How should HPC change to meet its Big Data needs?
* HPC already has to deal with Big Datal!
* |n-situ data processing, analysis and visualization is essential

* What are the architecture tradeoffs: filesystems vs. object
stores?

* Most scientific data is now in filesytems (Luster, GPFS)
* Challenge — how to bridge the gap
* \What are the workflow requirements
* In-memory workflow is essential
* Automated metadata and provenance is essential

* Can the HPC and Big Data communities learn from each
other?

* Yes, especially for analysis tasks
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