
Big	 Data	 Storage:	
Excuse	 me,	 but	 –	 	

	

Where	 can	 I	 keep	 my	 bits...?!?	

Michael	 Carey	

University	 of	 California,	 Irvine	

0	

DB	 History:	 	 Shared	 What?	

1	

Shared-‐everything	 Shared-‐disk	
Shared-‐nothing	

(1980’s)	

AsterixDB	 (Cartoon	 View)	

2	 2	

Distributed	 Storage	 in	 AsterixDB	

•  Hash-‐parMMoned,	 shared-‐nothing,	 local	 drives	
– ParMMoning	 based	 on	 primary	 key	 (hashing)	
– Secondary	 indexes	 local	 to,	 and	 consistent	 with,	
corresponding	 primary	 parMMons	 (all	 LSM-‐based)	

•  Also	 support	 external	 datasets	 (for	 HDFS)	
– MulMple	 (Hive)	 formats,	 secondary	 index	 support	
–  Index	 parMMons	 co-‐located	 with	 data	 (if	 possible)	
– Developed	 to	 save	 space	 and	 offer	 “IT	 comfort”	

3	

AsterixDB	 Data	 ReplicaMon	 (WIP)	

4	

Chained
Declustering

Log-Based
Replication

(synchronous,
recovery-only
copies kept)

Where	 Should	 My	 Bits	 Go...?	

•  CompuMng	 may	 be	 transient	 and/or	 elasMc	 –	 but	
accumulated	 data	 is	 not...!!!	
– NaMve	 storage	 à	 hard	 to	 expand	 and	 contract!	
–  Calls	 for	 an	 SD	 approach	 based	 on	 HPC	 (or	 cloud)	
storage	 faciliMes	

– Obviously	 workload-‐dependent	 (e.g.,	 queries	 and/or	
analyMcs,	 Big	 ML,	 Big	 Science,	 ...)	

•  Serious	 experimentaMon	 is	 needed	 (IMO)	
–  E.g.,	 SAN-‐based	 HPC	 architectures?	
–  E.g.,	 Google	 persistent	 disks	 (in	 Google	 Cloud)?	
–  Performance	 implicaMons	 interesMng	 to	 explore...	

5	

Where	 Should	 My	 Bits	 Go...?	

6	

Ex:	 	 SDSC’s	 Gordon	 cluster...	
•  Dedicated	 cluster	 with	 1024	 compute	 nodes	 and	 64	 I/O	

nodes.	
•  Each	 compute	 node	 contains	 two	 8-‐core	 2.6	 GHz	 Intel	 EM64T	

Xeon	 E5	 (Sandy	 Bridge)	 processors	 and	 64	 GB	 of	 DDR3-‐1333	
memory.	

•  Each	 I/O	 node	 contains	 two	 6-‐core	 2.67	 GHz	 Intel	 X5650	
(Westmere)	 processors,	 48	 GB	 of	 DDR3-‐1333	 memory,	 and	
sixteen	 300	 GB	 Intel	 710	 solid	 state	 drives.	

•  Network	 is	 a	 4x4x4	 3D	 torus	 with	 adjacent	 switches	
connected	 by	 three	 4x	 QDR	 InfiniBand	 links	 (120	 Gbit/s).	
Compute	 nodes	 (16	 per	 switch)	 and	 I/O	 nodes	 (1	 per	 switch)	
are	 connected	 to	 the	 switches	 by	 4x	 QDR	 (40	 Gbit/s).	

•  TheoreMcal	 peak	 performance	 is	 341	 TFlop/s.	

Hedging	 Our	 AsterixDB	 Bets	

•  Currently	 porMng	 our	 LSM-‐based	 storage	 to	 also	
work	 on	 top	 of	 HDFS	 (and	 YARN)	
– Might	 somehow	 feel	 more	 “comforMng”	 (and/or	
“environmentally	 friendly”)	 to	 Big	 Data	 IT	 shops	

– A	 different	 path	 to	 replicaMon	 &	 high	 availability	
•  InteresMng	 experiments	 lie	 ahead!	

– Revisit	 Stonebraker-‐like	 OS	 issues	 (today’s	 version)	
– Bake-‐off:	 Distributed	 record	 management	 vs.	 DFS,	
local	 versus	 remotely	 amached	 storage,	 ...	

– E.g.,	 how	 well	 does	 HDFS	 do	 w.r.t.	 locality	 of	 writes?	
7	

COMPUTING
PRACTICES

Operating System Support
for Database Management

Michael Stonebraker
University of California, Berkeley

1. Introduction
Database management systems

(DBMS) provide higher level user
support than conventional operating
systems. The DBMS designer must
work in the context of the OS he/she
is faced with. Different operating
systems are designed for different
use. In this paper we examine several
popular operating system services
and indicate whether they are appro-
priate for support of database man-
agement functions. Often we will see
that the wrong service is provided or
that severe performance problems
exist. When possible, we offer some
Permission to copy without fee all or part of
this material is granted provided that the cop-
ies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
"date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific per-
mission.
This research was sponsored by U.S. Air
Force Office of Scientific Research Grant 78-
3596, U.S. Army Research Office Grant
DAAG29-76-G-0245, Naval Electronics Sys-
tems Command Contract N00039-78-G-0013,
and National Science Foundation Grant
MCS75-03839-A01.
Key words and phrases: database manage-
ment, operating systems, buffer management,
file systems, scheduling, interprocess commu-
nication
CR Categories: 3.50, 3.70, 4.22, 4.33, 4.34, 4.35
Author's address: M. Stonebraker, Dept . of
Electrical Engineering and Computer Sci-
ences, University of California, Berkeley, CA
94720.
© 1981 ACM 0001-0782/81/0700-0412 $00.75.

412

SUMMARY: Several operating system services are examined
with a view toward their applicability to support of database
management functions. These services include buffer pool
management; the file system; scheduling, process manage-
ment, and interprocess communication; and consistency
control.

suggestions concerning improve-
ments. In the next several sections
we look at the services provided by
buffer pool management; the file sys-
tem; scheduling, process manage-
ment, and interprocess communica-
tion; and consistency control. We
then conclude with a discussion of
the merits of including all files in a
paged virtual memory.

The examples in this paper are
drawn primarily from the UNIX op-
erating system [17] and the INGRES
relational database system [19, 20]
which was designed for use with
UNIX. Most of the points made for
this environment have general appli-
cability to other operating systems
and data managers.

2. Buffer Pool Management
Many modern operating systems

provide a main memory cache for
the file system. Figure 1 illustrates
this service. In brief, UNIX provides
a buffer pool whose size is set when

Communications
of
the ACM

the operating system is compiled.
Then, all file I /O is handled through
this cache. A file read (e.g., read X
in Figure 1) returns data directly
from a block in the cache, if possible;
otherwise, it causes a block to be
"pushed" to disk and replaced by the
desired block. In Figure 1 we show
block Y being pushed to make room
for block X. A file write simply
moves data into the cache; at some
later time the buffer manager writes
the block to the disk. The UNIX
buffer manager used the popular
LRU [15] replacement strategy. Fi-
nally, when UNIX detects sequential
access to a file, it prefetches blocks
before they are requested.

Conceptually, this service is de-
sirable because blocks for which
there is so-called locality of reference
[15, 18] will remain in the cache over
repeated reads and writes. However,
the problems enumerated in the fol-
lowing subsections arise in using this
service for database management.

July 1981
Volume 24
Number 7

COMPUTING
PRACTICES

Operating System Support
for Database Management

Michael Stonebraker
University of California, Berkeley

1. Introduction
Database management systems

(DBMS) provide higher level user
support than conventional operating
systems. The DBMS designer must
work in the context of the OS he/she
is faced with. Different operating
systems are designed for different
use. In this paper we examine several
popular operating system services
and indicate whether they are appro-
priate for support of database man-
agement functions. Often we will see
that the wrong service is provided or
that severe performance problems
exist. When possible, we offer some
Permission to copy without fee all or part of
this material is granted provided that the cop-
ies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
"date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific per-
mission.
This research was sponsored by U.S. Air
Force Office of Scientific Research Grant 78-
3596, U.S. Army Research Office Grant
DAAG29-76-G-0245, Naval Electronics Sys-
tems Command Contract N00039-78-G-0013,
and National Science Foundation Grant
MCS75-03839-A01.
Key words and phrases: database manage-
ment, operating systems, buffer management,
file systems, scheduling, interprocess commu-
nication
CR Categories: 3.50, 3.70, 4.22, 4.33, 4.34, 4.35
Author's address: M. Stonebraker, Dept . of
Electrical Engineering and Computer Sci-
ences, University of California, Berkeley, CA
94720.
© 1981 ACM 0001-0782/81/0700-0412 $00.75.

412

SUMMARY: Several operating system services are examined
with a view toward their applicability to support of database
management functions. These services include buffer pool
management; the file system; scheduling, process manage-
ment, and interprocess communication; and consistency
control.

suggestions concerning improve-
ments. In the next several sections
we look at the services provided by
buffer pool management; the file sys-
tem; scheduling, process manage-
ment, and interprocess communica-
tion; and consistency control. We
then conclude with a discussion of
the merits of including all files in a
paged virtual memory.

The examples in this paper are
drawn primarily from the UNIX op-
erating system [17] and the INGRES
relational database system [19, 20]
which was designed for use with
UNIX. Most of the points made for
this environment have general appli-
cability to other operating systems
and data managers.

2. Buffer Pool Management
Many modern operating systems

provide a main memory cache for
the file system. Figure 1 illustrates
this service. In brief, UNIX provides
a buffer pool whose size is set when

Communications
of
the ACM

the operating system is compiled.
Then, all file I /O is handled through
this cache. A file read (e.g., read X
in Figure 1) returns data directly
from a block in the cache, if possible;
otherwise, it causes a block to be
"pushed" to disk and replaced by the
desired block. In Figure 1 we show
block Y being pushed to make room
for block X. A file write simply
moves data into the cache; at some
later time the buffer manager writes
the block to the disk. The UNIX
buffer manager used the popular
LRU [15] replacement strategy. Fi-
nally, when UNIX detects sequential
access to a file, it prefetches blocks
before they are requested.

Conceptually, this service is de-
sirable because blocks for which
there is so-called locality of reference
[15, 18] will remain in the cache over
repeated reads and writes. However,
the problems enumerated in the fol-
lowing subsections arise in using this
service for database management.

July 1981
Volume 24
Number 7

Is	 History	 RepeaMng	 Itself?	

8	

COMPUTING
PRACTICES

Operating System Support
for Database Management

Michael Stonebraker
University of California, Berkeley

1. Introduction
Database management systems

(DBMS) provide higher level user
support than conventional operating
systems. The DBMS designer must
work in the context of the OS he/she
is faced with. Different operating
systems are designed for different
use. In this paper we examine several
popular operating system services
and indicate whether they are appro-
priate for support of database man-
agement functions. Often we will see
that the wrong service is provided or
that severe performance problems
exist. When possible, we offer some
Permission to copy without fee all or part of
this material is granted provided that the cop-
ies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
"date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific per-
mission.
This research was sponsored by U.S. Air
Force Office of Scientific Research Grant 78-
3596, U.S. Army Research Office Grant
DAAG29-76-G-0245, Naval Electronics Sys-
tems Command Contract N00039-78-G-0013,
and National Science Foundation Grant
MCS75-03839-A01.
Key words and phrases: database manage-
ment, operating systems, buffer management,
file systems, scheduling, interprocess commu-
nication
CR Categories: 3.50, 3.70, 4.22, 4.33, 4.34, 4.35
Author's address: M. Stonebraker, Dept . of
Electrical Engineering and Computer Sci-
ences, University of California, Berkeley, CA
94720.
© 1981 ACM 0001-0782/81/0700-0412 $00.75.

412

SUMMARY: Several operating system services are examined
with a view toward their applicability to support of database
management functions. These services include buffer pool
management; the file system; scheduling, process manage-
ment, and interprocess communication; and consistency
control.

suggestions concerning improve-
ments. In the next several sections
we look at the services provided by
buffer pool management; the file sys-
tem; scheduling, process manage-
ment, and interprocess communica-
tion; and consistency control. We
then conclude with a discussion of
the merits of including all files in a
paged virtual memory.

The examples in this paper are
drawn primarily from the UNIX op-
erating system [17] and the INGRES
relational database system [19, 20]
which was designed for use with
UNIX. Most of the points made for
this environment have general appli-
cability to other operating systems
and data managers.

2. Buffer Pool Management
Many modern operating systems

provide a main memory cache for
the file system. Figure 1 illustrates
this service. In brief, UNIX provides
a buffer pool whose size is set when

Communications
of
the ACM

the operating system is compiled.
Then, all file I /O is handled through
this cache. A file read (e.g., read X
in Figure 1) returns data directly
from a block in the cache, if possible;
otherwise, it causes a block to be
"pushed" to disk and replaced by the
desired block. In Figure 1 we show
block Y being pushed to make room
for block X. A file write simply
moves data into the cache; at some
later time the buffer manager writes
the block to the disk. The UNIX
buffer manager used the popular
LRU [15] replacement strategy. Fi-
nally, when UNIX detects sequential
access to a file, it prefetches blocks
before they are requested.

Conceptually, this service is de-
sirable because blocks for which
there is so-called locality of reference
[15, 18] will remain in the cache over
repeated reads and writes. However,
the problems enumerated in the fol-
lowing subsections arise in using this
service for database management.

July 1981
Volume 24
Number 7

DBMS run-time code

run-time data

file F1

file F2

Fig. 5. Binding
Space.

user process
Files in to an Address

Brown might be updated before
Smith was examined, and as a result,
Smith would also receive the pay cut.
It is clearly undesirable to have the
outcome of an update depend on the
order of execution.

If the operating system maintains
the buffer pool and an intentions list
for crash recovery, it can avoid this
problem [19]. However, if there is a
buffer pool manager in user space, it
must maintain its own intentions list
in order to properly process this up-
date. Again, operating system facili-
ties are being duplicated.

5.3 Summary
It is certainly possible to have

buffering, concurrency control, and
crash recovery all provided by the
operating system. In order for the
system to be successful, however, the
performance problems mentioned in
Section 2 must be overcome. It is
also reasonable to consider having
all 3 services provided by the DBMS
in user space. However, if buffering
remains in user space and consis-
tency control does not, then much
code duplication appears inevitable.
Presumably, this will cause perform-
ance problems in addition to in-
creased human effort.

6. Paged Virtual Memory
It is often claimed that the appro-

priate operating system tactic for
database management support is to
bind files into a user's paged virtual

417

address space. In Figure 5 we show
the address space of a process con-
taining code to be executed, data that
the code uses, and the files F1 and
F2. Such files can be referenced by
a program as if they are program
variables. Consequently, a user never
needs to do explicit reads or writes;
he can depend on the paging facili-
ties of the OS to move his file blocks
into and out of main memory. Here,
we briefly discuss the problems in-
herent in this approach.

6.1 Large Files
Any virtual memory scheme

must handle files which are large
objects. Popular paging hardware
creates an overhead of 4 bytes per
4,096-byte page. Consequently, a
100M-byte file will have an overhead
of 100K bytes for the page table.
Although main memory is decreas-
ing in cost, it may not be reasonable
to assume that a page table of this
size is entirely resident in primary
memory. Therefore, there is th e pos-
sibility that an I /O operation will
induce two page faults: one for the
page containing the page table for
the data in question and one on the
data itself. To avoid the second fault,
one must wire down a large page
table in main memory.

Conventional file systems include
the information contained in the
page table in a file control block.
Especially in extent-based file sys-
tems, a very compact representation
of this information is possible. A run
of 1,000 consecutive blocks can be
represented as a starting block and a
length field. However, a page table
for this information would store each
of the 1,000 addresses even though
each differs by just one from its pred-
ecessor. Consequently, a file control
block is usually made main memory
resident at the time the file is opened.
As a result, the second I /O need
never be paid.

The alternative is to bind chunks
of a file into one's address space. Not
only does this provide a multiuser
DBMS with a substantial bookkeep-
ing problem concerning whether
needed data is currently addressable,
but it also may require a number of

Communications
of
the ACM

bind-unbind pairs in a transaction.
Since the overhead of a bind is likely
to be comparable to that of a file
open, this may substantially slow
down performance.

It is an open question whether or
not novel paging organizations can
assist in solving the problems men-
tioned in this section.

6.2 Buffering
All of the problems discussed in

Section 2 concerning buffering (e.g.,
prefetch, non-LRU management,
and selected force out) exist in a
paged virtual memory context. How
they can be cleanly handled in this
context is another unanswered ques-
tion.

7. Conclusions
The bottom line is that operating

system services in many existing sys-
tems are either too slow or inappro-
pilate. Current DBMSs usually pro-
vide their own and make little or no
use of those offered by the operating
system. It is important that future
operating system designers become
more sensitive to DBMS needs.

A DBMS would prefer a small
efficient operating system with only
desired services. Of those currently
available, the so-called real-time op-
erating systems which efficiently
provide minimal facilities come clos-
est to this ideal. On the other hand,
most general-purpose operating sys-
tems offer all things to all people at
much higher overhead. It is our hope
that future operating systems will be
able to provide both sets of services
in one environment.
References

I. Bayer, R. Organization and maintenance
of large ordered indices. Proc. ACM-
SIGFIDET Workshop on Data Description
and Access, Houston, Texas, Nov. 1970. This
paper defines a particular form of a balanced
n-ary tree, called a B-tree. Algorithms to
maintain this structure on inserts and deletes
are presented. The original paper on this
popular file organization tactic.
2. Birss, E. Hewlett-Packard Corp., General
Syst. Div. (private communication).
3. Blasgen, M., et al. The convoy
phenomenon. Operating Systs. Rev. 13, 2
(April 1979), 20-25. This article points out
the problem with descheduling a process
which has a short-term lock on an object
which other processes require regularly. The
impact on performance is noted and possible
solutions proposed.

July 1981
Volume 24
Number 7

