
© 2019 Cloudera, Inc. All rights reserved. 1

BOSS 2019
Andrew Wong

Follow along with the walkthroughs!
https://github.com/andrwng/boss19

From Zero to Hero with Apache Kudu

© 2019 Cloudera, Inc. All rights reserved. 2

Who am I?
Andrew Wong

● Software engineer at Cloudera (awong@cloudera.com)
● Apache Kudu PMC Member

Some Kudu things I have worked on:
● Scan optimizations
● Disk failure mitigation
● Integration with Hive Metastore (external catalog)
● Fine-grained authorization

mailto:awong@cloudera.com

© 2019 Cloudera, Inc. All rights reserved. 3

Traditional big data storage leaves a gap
Use cases fall between HDFS and HBase were difficult to manage

Parquet on HDFS

Fast Scans,
Analytics

and Processing of
Static Data

Fast On-Line
Updates &

Data Serving

Arbitrary
Storage
(Active

Archive)

Fast Analytics
on Changing Data

Unchanging

Fast Changing
Frequent Updates

HBase

Append-Only

Real-Time

Complex Hybrid
Architectures

Analytic
Gap

D
at

a
W

ri
te

 P
at

te
rn

Data Read Pattern

© 2019 Cloudera, Inc. All rights reserved. 4

Traditional big data storage leaves a gap
Use cases fall between HDFS and HBase were difficult to manage

Parquet on HDFS

Fast Scans,
Analytics

and Processing of
Static Data

Fast On-Line
Updates &

Data Serving

Arbitrary
Storage
(Active

Archive)

Fast Analytics
on Changing Data

Unchanging

Fast Changing
Frequent Updates

HBase

Append-Only

Real-Time

D
at

a
W

ri
te

 P
at

te
rn

Data Read Pattern

Kudu

HDFS and HBase
taped together
with cron jobs

Kudu fills
the Gap

© 2019 Cloudera, Inc. All rights reserved. 5

“Traditional” real-time analytics

New Partition

Most Recent Partition

Historical Data

HBase

Parquet
File

Have we
accumulated
enough data?

Reorganize
HBase file

into Parquet

• Wait for running operations to
complete

• Define new partition referencing
the newly written Parquet file

Kafka

Reporting
Request

Immutable Storage Considerations:
● How do I handle failure

during this process?
● How often do I reorganize

data streaming in into a
format appropriate for
reporting?

● When reporting, how do I
see data that has not yet
been reorganized?

● How do I ensure that
important jobs aren’t
interrupted by
maintenance?

© 2019 Cloudera, Inc. All rights reserved. 6

Real-time analytics with Kudu

Historical and Real-time
Data

Incoming data
(e.g. Kafka,

Spark, Impala)
Reporting
Request

Improvements:
● Much simpler architecture
● Significantly easier to handle

late arrivals of data
● New data available

immediately for analytics or
operations

Storage in Kudu

© 2019 Cloudera, Inc. All rights reserved. 7

What is Apache Kudu?
Mutable data storage engine, designed for analytics on real-time data

MUTABLE

STORAGE

ANALYTICS

REAL-TIME DATA

© 2019 Cloudera, Inc. All rights reserved. 8

What is Apache Kudu?
Mutable data storage engine, designed for analytics on real-time data

MUTABLE

STORAGE

ANALYTICS

REAL-TIME DATA

© 2019 Cloudera, Inc. All rights reserved. 9

What is Apache Kudu?
Mutable data storage engine, designed for analytics on real-time data

MUTABLE

STORAGE

ANALYTICS

REAL-TIME DATA

© 2019 Cloudera, Inc. All rights reserved. 10

What is Apache Kudu?
Mutable data storage engine, designed for analytics on real-time data

MUTABLE

STORAGE

ANALYTICS

REAL-TIME DATA

© 2019 Cloudera, Inc. All rights reserved. 11

What is Apache Kudu?
Mutable data storage engine, designed for analytics on real-time data

MUTABLE

STORAGE

ANALYTICS

REAL-TIME DATA

© 2019 Cloudera, Inc. All rights reserved. 12

● Open source
○ Parquet on HDFS, object storage
○ HBase/Cassandra
○ TiDB with TiFlash
○ etc.

● Proprietary
○ Vertica, Teradata, SAP
○ Spanner
○ Redshift

“Big deal... Aren’t there a ton of big data systems out there?”
Yes there are.

© 2019 Cloudera, Inc. All rights reserved. 13

Why else did we build Kudu?
Changing hardware landscape

● Spinning disks --> solid state storage
○ NAND flash: up to 450k read, 250k write IOPS, ~2GB/s read and

~1.5GB/s write throughput, at under $1/GB
○ PMEM: order of magnitude faster than NAND, cheaper than RAM

● RAM is getting cheaper and more abundant
○ 128 --> 256 --> 512 GB over the last few years

Takeaway: The next bottleneck is CPU, and current storage systems weren’t
designed with CPU efficiency in mind.

© 2019 Cloudera, Inc. All rights reserved. 14

Scalable and fast tabular storage

Scalable
● Production clusters with hundreds of nodes
● On the order of hundreds of TBs to low PBs

Fast
● Written primarily in C++
● Millions of write operations per second across cluster
● Multiple GB/s read throughput per node

Tabular
● Strict schema, finite column count, no BLOBs

© 2019 Cloudera, Inc. All rights reserved. 15

And we’ve got some friends!
Apache and CNCF

© 2019 Cloudera, Inc. All rights reserved. 16

And we’ve got some friends!
Apache and CNCF

Most commonly used

New in 2018/19!

In progress (Bahir)

Dev only

© 2019 Cloudera, Inc. All rights reserved. 17

The rest of the Ecosystem isn’t that scary
Somewhat clear lines between roles

Ingest:
● NiFi, Spark Streaming, Flink, Kafka, Flume

Storage:
● Kudu
● Previously HBase, HDFS, and a lot of cron jobs

Querying:
● Impala, Hive, Spark SQL

© 2019 Cloudera, Inc. All rights reserved. 18

From Zero to Hero with Apache Kudu
Agenda

Start with the basics:
● Introduction to Kudu’s data model
● Distributed architecture

Jump into more complex things:
● Schema design exercises
● Partitioning in Kudu

Deploy a small “big data” pipeline:
● Spark, Nifi

© 2019 Cloudera, Inc. All rights reserved. 19

From Zero to Hero with Apache Kudu

● Pull from GitHub:
○ apache/kudu:master

● Pull from DockerHub:
○ apache/kudu:latest

● brew install apache-spark

If you can

© 2019 Cloudera, Inc. All rights reserved. 20

A primer on Kudu concepts
What is “data” to Kudu?

Table: prominent abstraction for users -- a set of uniquely identifiable rows
Schema: describes the columns and ordering of the rows of a table
● Subset of columns defined as “primary key”

Partition schema: describes the partitions of a table
● Subset of primary key defined as “partition key”

Tablet: partition of a table; the logical unit of replication and parallelization
● Underlying data stored in sorted order by primary key
● Tablet replicas are dispersed among servers in a cluster

© 2019 Cloudera, Inc. All rights reserved. 21

What makes a tablet?
Very much LSM-inspired

Write-ahead log: as writes come in, they are written in fast, row-oriented storage

Mem-Rowset: as writes are written to the WAL, they are also applied to an
in-memory, row-oriented B-Tree

Periodic flushes: as the mem-rowset grows large, there are periodic flushes to
free up memory and transition the mem-rowset to a disk-rowset

Many Disk-Rowsets: represented as an interval tree for lookups

© 2019 Cloudera, Inc. All rights reserved. 22

What makes a tablet?
Wait what is “LSM”? You said we’re starting from zero!

● LSM: Log Structured Merge (Cassandra, HBase, etc)
○ Inserts and updates all go to an in-memory map (MemStore) and later

flush to on-disk files (HFile/SSTable)
○ Reads perform an on-the-fly merge of all on-disk HFiles

● Kudu
○ Shares some traits (memstores, compactions)
○ More complex.
○ Slower writes in exchange for faster reads (especially scans)

© 2019 Cloudera, Inc. All rights reserved. 23

What makes a tablet?
And more!

B-Tree index per rowset to enable search on a primary key
Bloom filter per rowset to enable lookups for deduplication of rows
CFiles the actual columnar data, in primary key order

Deltas (updates and deletes)
● In-memory delta store per rowset
● On-disk delta stores per rowset
● New updates are represented as REDO records, periodically flushed to

UNDO records to avoid REDO traversal

© 2019 Cloudera, Inc. All rights reserved. 24

What makes a tablet?
Overview

© 2019 Cloudera, Inc. All rights reserved. 25

Maintenance Manager
Always be flushing and compacting!

● The maintenance manager handles background tasks
○ Flushing the MRS or DMS to disk
○ Compactions
○ WAL GC

● A maintenance manager thread decides what task to perform using a
cost-based optimization model
○ Prefers flushing when the server is under memory pressure

© 2019 Cloudera, Inc. All rights reserved. 26

Distributed architecture
Main roles in Kudu

Master: a server that hosts Kudu system metadata and catalog information
Tablet server: a server that hosts tablet replicas
Client: an application that inserts to or reads from Kudu
● Tooling
● C++ application
● Java
● Python
● Spark
● Impala
● ...

© 2019 Cloudera, Inc. All rights reserved. 27

Let’s walk through deploying Kudu!
https://github.com/andrwng/boss19

● Explore a single node deployment of Kudu

© 2019 Cloudera, Inc. All rights reserved. 28

Distributed architecture
Replication, replication, replication!

© 2019 Cloudera, Inc. All rights reserved. 29

Distributed architecture
Replication, replication, replication!

© 2019 Cloudera, Inc. All rights reserved. 30

Distributed architecture
Replication, replication, replication!

© 2019 Cloudera, Inc. All rights reserved. 31

Raft consensus
Consensus protocol to replicate data

● Leaders constantly heartbeating
to followers

● Leader elections triggered when
a follower doesn’t hear back
from leader

● Write operations go to leader
first and are replicated to
followers

© 2019 Cloudera, Inc. All rights reserved. 32

TS Z
Tablet 2

(LEADER)

Client

TS X
Tablet 2

(FOLLOWER)

TS Y
Tablet 2

(FOLLOWER)

WAL

WALWAL

2b. Leader writes local WAL

1a. Client->Leader: Write() RPC

2a. Leader->Followers:
UpdateConsensus() RPC

3. Follower: write WAL

4. Follower->Leader: success

3. Follower: write WAL

5. Leader has achieved majority

6. Leader->Client: Success!

Raft consensus

© 2019 Cloudera, Inc. All rights reserved. 33

Dealing with node failures
Wait long enough, and Kudu heals itself!

● If a Raft leader notices that it
hasn’t heard from one of its
replicas in a while, it will try to
create a new replica

● Physical copy of leader sent to
new replica

● Old replica is removed from Raft
configuration

© 2019 Cloudera, Inc. All rights reserved. 34

Master details

● All table and tablet metadata is stored in a single tablet
○ Special tablet ID: 00000000000000000000000000000000

● Like any other tablet, the metadata tablet is replicated via Raft
● Master is effectively a tablet server for this one tablet
● Failure handling

○ Transient failures are handled transparently
○ Permanent failures require operator intervention

© 2019 Cloudera, Inc. All rights reserved. 35

Balance and Skew

Tablet replica placement controlled by the master based on its view of the world
● Placement uses “Power of Two Choices” algorithm to even out replica

count across cluster
○ Select two tablet servers, pick the one with fewer tablet replicas

● Rebalancer tool can be run to redistribute replicas in case of skew

© 2019 Cloudera, Inc. All rights reserved. 36

Cluster health
kudu cluster ksck <masters>

When operating Kudu, this is your lifeline!

Tells you:
● What servers exist
● What tables and tablets exist
● What tablet are under-replicated and recovering
● What the skew on the cluster is like
● What non-default flags are set

© 2019 Cloudera, Inc. All rights reserved. 37

Client abstractions

Sessions:
● In-memory write buffers, eventually get “flushed” to the servers

Scanners:
● Fetches rows one batch at a time

© 2019 Cloudera, Inc. All rights reserved. 38

KuduTable table = client.openTable(“metrics”);
KuduSession session = client.newSession();
Insert ins = table.newInsert();
ins.getRow().addString(“host”, “foo.example.com”);
ins.getRow().addString(“metric”, “load-avg.1sec”);
ins.getRow().addDouble(“value”, 0.05);
session.apply(ins);
session.flush();

Client abstractions (writes)

© 2019 Cloudera, Inc. All rights reserved. 39

KuduScanner scanner = client.newScannerBuilder(table)
 .setProjectedColumnNames(Lists.of(“value”))
 .build();
while (scanner.hasMoreRows()) {
 RowResultIterator batch = scanner.nextRows();
 while (batch.hasNext()) {
 RowResult result = batch.next();
 System.out.println(result.getDouble(“value”));
 }
}

Client abstractions (scans)

© 2019 Cloudera, Inc. All rights reserved. 40

KuduScanner scanner = client.newScannerBuilder(table)
 .addPredicate(KuduPredicate.newComparisonPredicate(
 table.getSchema().getColumn(“timestamp”),
 ComparisonOp.GREATER,
 System.currentTimeMillis() / 1000 + 60))
 .build();

Note: Kudu can evaluate simple predicates, but no aggregations, complex
expressions, UDFs, etc.

Client abstractions (scans, but with predicates!)

© 2019 Cloudera, Inc. All rights reserved. 41

Client cluster interaction

Master
● Tablet metadata fetched from the master, including locations and

partitioning info
● Tablets are “pruned” via partitioning info so only the appropriate tablets are

scanned

Tablet servers
● Requests sent to tablet servers
● Rejected if appropriate

© 2019 Cloudera, Inc. All rights reserved. 42

Client consistency models
Choose the one which fits your workload!

● READ_LATEST (default mode)
○ Read committed state immediately

● READ_AT_SNAPSHOT
○ Consistent and repeatable
○ This allows strict-serializable semantics for reads and writes

● READ_YOUR_WRITES (Kudu 1.7 and up)
○ Ensures all previously read and written values are read
○ Not repeatable

© 2019 Cloudera, Inc. All rights reserved. 43

Client

Hey Master! Where is the row for
‘tlipcon’ in table “T”?

It’s part of tablet 2, which is on servers {Z,Y,X}.
BTW, here’s info on other tablets you might
care about: T1, T2, T3, …

UPDATE tlipcon
SET col=foo

Meta Cache
T1: …
T2: …
T3: …

© 2019 Cloudera, Inc. All rights reserved. 44

Continuing the walkthrough!
https://github.com/andrwng/boss19

● Explore a multinode deployment

© 2019 Cloudera, Inc. All rights reserved. 45

Time Series

Series Time Value

To demonstrate advanced table partitioning techniques, we are going to think
through a table for time series storage of machine metrics.

© 2019 Cloudera, Inc. All rights reserved. 46

Time Series

Series Time Value

us-east.appserver01.loadavg.1min 2016-05-09T15:14:30Z 0.44

us-east.appserver01.loadavg.1min 2016-05-09T15:14:40Z 0.53

us-west.dbserver03.rss 2016-05-09T15:14:30Z 1572864

us-west.dbserver03.rss 2016-05-09T15:15:00Z 2097152

© 2019 Cloudera, Inc. All rights reserved. 47

Time Series — Design Criteria

● Insert Performance (throughput & latency)
● Read Performance (throughput & latency)

○ What kind of queries are you doing?
■ Look at all metrics at a specific time
■ Look at one metric across a long span of time

© 2019 Cloudera, Inc. All rights reserved. 48

Time Series — Common Patterns

SELECT time, value FROM timeseries
WHERE series = "us-west.dbserver03.rss"
 AND time >= 2016-05-08T00:00:00;

● Datapoints are inserted in time order across all series

● Reads specify a series and a time range, containing hundreds to many
thousands of datapoints

© 2019 Cloudera, Inc. All rights reserved. 49

Reminder: Partitioning vs Indexing

● Partitioning: how datapoints are distributed among partitions
○ Kudu: tablet
○ HBase: region
○ Cassandra: VNode

● Indexing: how data within a single partition is sorted

© 2019 Cloudera, Inc. All rights reserved. 50

Reminder: Partitioning vs Indexing

(series, time) (time, series)

(us-east.appserver01.loadavg, 2016-05-09T15:14:00Z)
(us-east.appserver01.loadavg, 2016-05-09T15:15:00Z)
(us-west.dbserver03.rss, 2016-05-09T15:14:30Z)
(us-west.dbserver03.rss, 2016-05-09T15:14:30Z)

(2016-05-09T15:14:00Z, us-east.appserver01.loadavg)
(2016-05-09T15:14:30Z, us-west.dbserver03.rss)
(2016-05-09T15:15:00Z, us-east.appserver01.loadavg)
(2016-05-09T15:14:30Z, us-west.dbserver03.rss)

● Partitioning: how datapoints are distributed among partitions
○ Kudu: tablet
○ HBase: region
○ Cassandra: VNode

● Indexing: how data within a single partition is sorted

© 2019 Cloudera, Inc. All rights reserved. 51

Reminder: Partitioning vs Indexing

(us-east.appserver01.loadavg, 2016-05-09T15:14:00Z)
(us-east.appserver01.loadavg, 2016-05-09T15:15:00Z)
(us-west.dbserver03.rss, 2016-05-09T15:14:30Z)
(us-west.dbserver03.rss, 2016-05-09T15:14:30Z)

(2016-05-09T15:14:00Z, us-east.appserver01.loadavg)
(2016-05-09T15:14:30Z, us-west.dbserver03.rss)
(2016-05-09T15:15:00Z, us-east.appserver01.loadavg)
(2016-05-09T15:14:30Z, us-west.dbserver03.rss)

(series, time) (time, series)
SELECT * WHERE series = ‘us-east.appserver01.loadavg’;

● Partitioning: how datapoints are distributed among partitions
○ Kudu: tablet
○ HBase: region
○ Cassandra: VNode

● Indexing: how data within a single partition is sorted

© 2019 Cloudera, Inc. All rights reserved. 52

Partitioning

● Kudu has flexible policies for distributing data among partitions
○ Hash partitioning is built in, and can be combined with range

partitioning
● Goal: acceptable distribution of data across tablets at any given time
● Goal: allow expected scans to prune tablets

● Indexing is independent of partitioning!!!

© 2019 Cloudera, Inc. All rights reserved. 53

Partitioning — By Time Range

© 2019 Cloudera, Inc. All rights reserved. 54

Partitioning — By Time Range (inserts)

All Inserts go to Latest Partition

© 2019 Cloudera, Inc. All rights reserved. 55

Partitioning — By Time Range (scans)

Big scans (across large time intervals)
can be parallelized across many partitions

© 2019 Cloudera, Inc. All rights reserved. 56

Partitioning — By Series Range

© 2019 Cloudera, Inc. All rights reserved. 57

Partitioning — By Series Range (inserts)

Inserts are spread among all partitions

© 2019 Cloudera, Inc. All rights reserved. 58

Partitioning — By Series Range (scans)

Scans are over a single partition

© 2019 Cloudera, Inc. All rights reserved. 59

Partitioning — By Series Range

Partitions can become unbalanced,
resulting in hot spotting

© 2019 Cloudera, Inc. All rights reserved. 60

Partitioning — By Series Hash

© 2019 Cloudera, Inc. All rights reserved. 61

Partitioning — By Series Hash (inserts)

Inserts are spread among all partitions

© 2019 Cloudera, Inc. All rights reserved. 62

Partitioning — By Series Hash (scans)

Scans are over a single partition

© 2019 Cloudera, Inc. All rights reserved. 63

Partitioning — By Series Hash

Partitions grow overtime, eventually
 becoming too big for a single server

© 2019 Cloudera, Inc. All rights reserved. 64

Partitioning — By Series Hash + Time Range

© 2019 Cloudera, Inc. All rights reserved. 65

Partitioning — By Series Hash + Time Range (inserts)

Inserts are spread among all partitions
 in the latest time range

© 2019 Cloudera, Inc. All rights reserved. 66

Partitioning — By Series Hash + Time Range (scans)

Big scans (across large time intervals)
can be parallelized across partitions

© 2019 Cloudera, Inc. All rights reserved. 67

Spark SQL and Nifi walkthrough

● Deploy some Spark
● Deploy some Nifi
● ???
● Profit

© 2019 Cloudera, Inc. All rights reserved. 68

● Column projection and predicate pushdown
○ Only read the referenced columns
○ Convert ‘WHERE’ clauses into Kudu predicates
○ Kudu predicates automatically convert to primary key scans, etc

Spark DataSource optimizations

© 2019 Cloudera, Inc. All rights reserved. 69

Spark DataSource optimizations
Predicate pushdown

scala> sqlContext.sql("select avg(value) from metrics where host = 'e1103.halxg.cloudera.com'").explain
== Physical Plan ==
TungstenAggregate(key=[], functions=[(avg(value#3),mode=Final,isDistinct=false)], output=[_c0#94])
+- TungstenExchange SinglePartition, None
 +- TungstenAggregate(key=[], functions=[(avg(value#3),mode=Partial,isDistinct=false)],
 output=[sum#98,count#99L])
 +- Project [value#3]
 +- Scan org.apache.kudu.spark.kudu.KuduRelation@e13cc49[value#3]
 PushedFilters: [EqualTo(host,e1103.halxg.cloudera.com)]

© 2019 Cloudera, Inc. All rights reserved. 70

Partition pruning

Spark DataSource optimizations

scala> df.where("host like 'foo%'").rdd.partitions.length
res1: Int = 20
scala> df.where("host = 'foo'").rdd.partitions.length
res2: Int = 1

© 2019 Cloudera, Inc. All rights reserved. 71

Writing via Spark

// Use KuduContext to create, delete, or write to Kudu tables
val kuduContext = new KuduContext("kudu-master:7051,kudu-master:7151,kudu-master:7251")

// Create a new Kudu table from a dataframe schema
// NB: No rows from the dataframe are inserted into the table
kuduContext.createTable("test_table", df.schema, Seq("key"), new CreateTableOptions().setNumReplicas(1))

// Insert, delete, upsert, or update data
kuduContext.insertRows(df, "test_table")
kuduContext.deleteRows(sqlContext.sql("select id from kudu_table where id >= 5"), "kudu_table")
kuduContext.upsertRows(df, "test_table")
kuduContext.updateRows(df.select(“id”, $”count” + 1, "test_table")

© 2019 Cloudera, Inc. All rights reserved. 72

Spark SQL and Nifi walkthrough
https://github.com/andrwng/boss19

● Deploy some Spark
● Deploy some Nifi
● ???
● Profit

© 2019 Cloudera, Inc. All rights reserved. 73

● Use Impala to periodically (e.g.
every month) move data from
Kudu into cold storage

● Query both hot Kudu data and
colder HDFS and Cloud data
with a view

● Simpler primitives than before

Excellent blog post:
https://kudu.apache.org/2019/03/05/transparent-hierarchical-
storage-management-with-apache-kudu-and-impala.html

Interesting pattern: Hierarchical storage
Return of the Lambda? (but longer time scale)

https://kudu.apache.org/2019/03/05/transparent-hierarchical-storage-management-with-apache-kudu-and-impala.html
https://kudu.apache.org/2019/03/05/transparent-hierarchical-storage-management-with-apache-kudu-and-impala.html

© 2019 Cloudera, Inc. All rights reserved. 74

Thank you!

Twitter: @ApacheKudu
Slack: https://getkudu-slack.herokuapp.com/
Website: kudu.apache.org

Questions?
awong@cloudera.com

https://getkudu-slack.herokuapp.com/
http://kudu.apache.org
mailto:awong@cloudera.com

