From Zero to Hero with Apache Kudu

BOSS 2019
Andrew Wong
Follow along with the walkthroughs!
https://github.com/andrwng/boss19

CLOU D=RA / © 2019 Cloudera, Inc. All rights reserved 1

Who am I?
Andrew Wong

» Software engineer at Cloudera (awong(@cloudera.com)
o Apache Kudu PMC Member

Some Kudu things | have worked on:

» Scan optimizations

» Disk failure mitigation

» Integration with Hive Metastore (external catalog)
» Fine-grained authorization

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 2

mailto:awong@cloudera.com

Traditional big data storage leaves a gap

Use cases fall between HDFS and HBase were difficult to manage

<4 Analytic
Gap
Real-Time A f/ \ HB
ase
I I
= Fast Changing I
()] .
£ Frequent Updates Comp{ex Hybrid I
o | Architectures I
| |
= Append-Only \
m —_— —_— _— —_— _— I
= Parquet on HDFS
(]
Unchanging)
Arbitrary Fast Scans, Fast Analytics Fast On-Line
Storage Analytics on Changing Data Updates &
(Active and Processing of Data Serving

Archive) Static Data
Data Read Pattern
CLO U D=RA / © 2019 Cloudera, Inc. All rights reserved. 3

Traditional big data storage leaves a gap

Use cases fall between HDFS and HBase were difficult to manage

< Kudu fills—pp

Real-Time

Fast Changing
Frequent Updates

Append-Only

Parquet on HDFS

Unchanging)

c
S
()
)
)
(C
o
()
=
=
(]
i
1
(]

Arbitrary Fast Scans, Fast Analytics Fast On-Line
Storage Analytics on Changing Data Updates &
(Active and Processing of Data Serving

Archive) Static Data
Data Read Pattern
CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved.

“Traditional” real-time analytics

Have we
accumulated
enough data?

Reorganize
HBase file
into Parquet

CLOUDZ=RA

Immutable Storage

* Wait for running operations to
complete

* Define new partition referencing

the newly written Parquet file

Considerations:

e How do I handle failure
during this process?

e How often do | reorganize
data streaming in into a

Reporting format appropriate for
Request reporting?

e When reporting, how do |
see data that has not yet
been reorganized?

e How do I ensure that
important jobs aren't
interrupted by
maintenance?

/ © 2019 Cloudera, Inc. All rights reserved. 5

Real-time analytics with Kudu

Storage in Kudu

Improvements:

e Much simpler architecture
e Significantly easier to handle
late arrivals of data

: e New data available
Reporting . diately f i r
Request imme .'a ely Tor analytics o
operatlons

Incoming data
(e.g. Kafka,
Spark, Impala)

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 6

What is Apache Kudu?

Mutable data storage engine, designed for analytics on real-time data

MUTABLE
STORAGE
ANALYTICS

REAL-TIME DATA

C LOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 7

What is Apache Kudu?

Mutable data storage engine, designed for analytics on real-time data

MUTABLE
STORAGE
ANALYTICS

REAL-TIME DATA

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 8

What is Apache Kudu?

Mutable data storage engine, designed for analytics on real-time data

MUTABLE
STORAGE
ANALYTICS

REAL-TIME DATA

CLOUD=RA / / © 2019 Cloudera, Inc. All rights reserved. 9

What is Apache Kudu?

Mutable data storage engine, designed for analytics on real-time data

MUTABLE
STORAGE
ANALYTICS

REAL-TIME DATA

CLOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 10

What is Apache Kudu?

Mutable data storage engine, designed for analytics on real-time data

MUTABLE
STORAGE
ANALYTICS

REAL-TIME DATA

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 11

“Big deal... Aren’t there a ton of big data systems out there?”

Yes there are.

Open source
Parquet on HDFS, object storage
HBase/Cassandra
TiDB with TiFlash
etc.
Proprietary
Vertica, Teradata, SAP
Spanner
Redshift

C LOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 12

Why else did we build Kudu?

Changing hardware landscape

» Spinning disks --> solid state storage
> NAND flash: up to 450k read, 250k write IOPS, ~2GB/s read and
~1.5GB/s write throughput, at under $1/GB
> PMEM: order of magnitude faster than NAND, cheaper than RAM
« RAM is getting cheaper and more abundant
o 128 —>256 --> 512 GB over the last few years

Takeaway: The next bottleneck is CPU, and current storage systems weren't
designed with CPU efficiency in mind.

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserve

Scalable and fast tabular storage

Scalable

o Production clusters with hundreds of nodes
o Onthe order of hundreds of TBs to low PBs

Fast

o Written primarily in C++
» Millions of write operations per second across cluster
» Multiple GB/s read throughput per node

Tabular
o Strict schema, finite column count, no BLOBs

CLOUDZ=RA

/ © 2019 Cloudera, Inc. All rights reserved. 14

And we've got some friends!
Apache and CNCF

APACHE

Spark

CLOUDZ=RA

~—
New in 2018/19!

And we've got some friends!
Apache and CNCF

i

sanc - EEs
CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 16

APACHE

The rest of the Ecosystem isn’t that scary

Somewhat clear lines between roles

Ingest: n I @:

NiFi, Spark Streaming, Flink, Kafka, Flume
Storage:

Kudu
Previously HBase, HDFS, and a lot of cron jobs

Querying:
Impala, Hive, Spark SQL (% ‘I\Z
\ Q APACHE
CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 17

APACHE

Spark

éFlink

From Zero to Hero with Apache Kudu
Agenda

Start with the basics:

Introduction to Kudu’s data model
Distributed architecture

Jump into more complex things:

Schema design exercises
Partitioning in Kudu

Deploy a small “big data” pipeline:
Spark, Nifi

CLOUDZ=RA

/ © 2019 Cloudera, Inc. All rights reserved. 18

From Zero to Hero with Apache Kudu

If you can

Pull from GitHub:
apache/kudu:master

Pull from DockerHub:
apache/kudu:latest

brew install apache-spark

C LOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 19

A primer on Kudu concepts
What is “data” to Kudu?

Table: prominent abstraction for users -- a set of uniquely identifiable rows
Schema: describes the columns and ordering of the rows of a table
» Subset of columns defined as “primary key”
Partition schema: describes the partitions of a table
» Subset of primary key defined as “partition key”
Tablet: partition of a table; the logical unit of replication and parallelization

» Underlying data stored in sorted order by primary key
» Tablet replicas are dispersed among servers in a cluster

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 20

What makes a tablet?
Very much LSM-inspired

Write-ahead log: as writes come in, they are written in fast, row-oriented storage

Mem-Rowset: as writes are written to the WAL, they are also applied to an
in-memory, row-oriented B-Tree

Periodic flushes: as the mem-rowset grows large, there are periodic flushes to
free up memory and transition the mem-rowset to a disk-rowset

Many Disk-Rowsets: represented as an interval tree for lookups

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 21

What makes a tablet?

Wait what is “LSM"? You said we're starting from zero!

» LSM: Log Structured Merge (Cassandra, HBase, etc)

> Inserts and updates all go to an in-memory map (MemStore) and later
flush to on-disk files (HFile/SSTable)

o Reads perform an on-the-fly merge of all on-disk HFiles
o Kudu
o Shares some traits (memstores, compactions)
o More complex.
- Slower writes in exchange for faster reads (especially scans)

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 22

What makes a tablet?

And more!

B-Tree index per rowset to enable search on a primary key
Bloom filter per rowset to enable lookups for deduplication of rows
CFiles the actual columnar data, in primary key order

Deltas (updates and deletes)

» In-memory delta store per rowset

» On-disk delta stores per rowset

» New updates are represented as REDO records, periodically flushed to
UNDO records to avoid REDO traversal

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 23

What makes a tablet?

Overview
Raft Consented Writes
A
g, UPDATES B
g MemRowSet DeltaMemStore 0 DeltaMemStore 1 DeltaMemStore X %’
)
= e
£ ———
v I — << Background Flushes >>
A ! E
WAL DiskRowSet 0 DiskRowSet 1 DiskRowSet X %
®
00000 S
= / \ . v . R I AN
5 UNDO records REDO records REDO records REDO records REDO records 3
& 2
? = s
\ 4

- { -

Earlier Snapshots Flush Time Later Snapshots
C LOU D=RA 7 > / © 2019 Cloudera, Inc. All rights reserved. 24

Maintenance Manager

Always be flushing and compacting!

» The maintenance manager handles background tasks
o Flushing the MRS or DMS to disk
o Compactions
o WAL GC

» A maintenance manager thread decides what task to perform using a
cost-based optimization model

o Prefers flushing when the server is under memory pressure

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 25

Distributed architecture

Main roles in Kudu

Master: a server that hosts Kudu system metadata and catalog information
Tablet server: a server that hosts tablet replicas
Client: an application that inserts to or reads from Kudu

» Tooling

o C++ application

o Java

° Python

o Spark

» Impala

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 26

Let’s walk through deploying Kudu!
https://github.com/andrwng/boss19

Explore a single node deployment of Kudu

CLOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 27

Distributed architecture

Replication, replication, replication!

replication

replication ' replication
replication Tablet Server replication

replication

Tablet Server Tablet Server

CLOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 28

Distributed architecture

Replication, replication, replication!

replication

replication replication

heartbeat heartbeat heartbeat heartbeat heartbeat

cee Tablet Server replication Tablet Server replication Tablet Server ce e

replication

C LOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 29

Distributed architecture

Replication, replication, replication!

replication

replication replication

N

heartbeat heartbeat heartbeat

Tablet Server replication Tablet Server reglication

metadata

heartbeat

o 3 —
replidation

data data data

CLOUDZ=RA

heartbeat

Tablet Server ce o

/ © 2019 Cloudera, Inc. All rights reserved. 30

Raft consensus

Consensus protocol to replicate data

Leaders constantly heartbeating
to followers

Leader elections triggered when
a follower doesn’t hear back
from leader

Write operations go to leader
first and are replicated to
followers

CLOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 31

Raft consensus

2b. Leader writes local WAL

6. Leader->Client: Success!
‘

1a. Client->Leader: Write() RPC 5. Leader has achieved majority

3'14. Follower->Leader: success

(FOLLOWER) (FOLLOWER)

3. Follower: write WAL 3. Follower: write WAL

CLOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 32

Dealing with node failures

Wait long enough, and Kudu heals itself!

If a Raft leader notices that it
hasn't heard from one of its
replicas in a while, it will try to
create a new replica

Physical copy of leader sent to
new replica

Old replica is removed from Raft
configuration

CLOUDZ=RA

Master details

» Alltable and tablet metadata is stored in a single tablet

o Special tablet ID: 00000000000000000000000000000000
« Like any other tablet, the metadata tablet is replicated via Raft
» Master is effectively a tablet server for this one tablet
» Failure handling

o Transient failures are handled transparently

o Permanent failures require operator intervention

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 34

Balance and Skew

Tablet replica placement controlled by the master based on its view of the world

» Placement uses “Power of Two Choices” algorithm to even out replica
count across cluster
o Select two tablet servers, pick the one with fewer tablet replicas
» Rebalancer tool can be run to redistribute replicas in case of skew

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 35

Cluster health

kudu cluster ksck <masters>

When operating Kudu, this is your lifeline!

Tells you:

o What servers exist

» What tables and tablets exist

» What tablet are under-replicated and recovering
o What the skew on the cluster is like

» What non-default flags are set

CLOUDZ=RA

/ © 2019 Cloudera, Inc. All rights reserved. 36

Client abstractions

Sessions:
« In-memory write buffers, eventually get “flushed” to the servers

Scanners:
o Fetches rows one batch at a time

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 37

Client abstractions (writes)

KuduTable table = client.openTable(“metrics”);
KuduSession session = client.newSession();

Insert ins = table.newlnsert();

ins.getRow() .addString(“host”, “foo.example.com”);
ins.getRow().addString(“metric”, “load-avg.lsec”);
ins.getRow() .addDouble(“value”, 0.065);
session.apply(ins);

session.flush();

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 38

Client abstractions (scans)

KuduScanner scanner = client.newScannerBuilder(table)
.setProjectedColumnNames(Lists.of(“value”))
.build();

while (scanner.hasMoreRows()) A{
RowResultIterator batch = scanner.nextRows();

while (batch.hasNext()) {
RowResult result = batch.next();

System.out.println(result.getDouble(“value”));
}

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 39

Client abstractions (scans, but with predicates!)

KuduScanner scanner = client.newScannerBuilder(table)
.addPredicate(KuduPredicate.newComparisonPredicate(
table.getSchema().getColumn(“timestamp”),
ComparisonOp.GREATER,
System.currentTimeMillis() / 1060 + 60))
.build();

Note: Kudu can evaluate simple predicates, but no aggregations, complex
expressions, UDFs, etc.

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 40

Client cluster interaction

Master

» Tablet metadata fetched from the master, including locations and
partitioning info

» Tablets are “pruned” via partitioning info so only the appropriate tablets are
scanned

Tablet servers

» Requests sent to tablet servers
» Rejected if appropriate

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 41

Client consistency models

Choose the one which fits your workload!

o READ_LATEST (default mode)

o Read committed state immediately
» READ_AT_SNAPSHOT

o Consistent and repeatable

o This allows strict-serializable semantics for reads and writes
o READ_YOUR_WRITES (Kudu 1.7 and up)

o Ensures all previously read and written values are read

o Not repeatable

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 42

Master tablet

e Bl Hey Master! Where is the row for —
eta Cache . . M
‘tlipcon’ in table “T”? Sorsi

»
e

It’s part of tablet 2, which is on servers {Z,Y,X}. | yaster

BTW, here’s info on other tablets you might ~ [¥"®
care about: T1,T2, T3, ...
Master
. Tablet 1 Tablet2 .- Tabletn Server C
UPDATE tlipcon
SET CO|=fOO Tablet 1 | E Tablet
‘ LEADER { ! Server W
; i E Tablet
E;‘l’a&l)e‘;v:sa | ! Server X
Tablet 1 i 1 Tablet 3 Tablet
OWER : : LEADER ServerY
E :|] e \ ! l | Tablet
E LTE:::‘Efa ! "Tafc'f\'ﬂ?m ServerZ

CLOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 43

Continuing the walkthrough!
https://github.com/andrwng/boss19

Explore a multinode deployment

C LOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 44

Time Series

To demonstrate advanced table partitioning techniques, we are going to think
through a table for time series storage of machine metrics.

Series » Time » Value

C LOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 45

Time Series

—

us-east.appserverOl.loadavg.1min 2016-05-09T15:14:30Z 0.44

us-east.appserver0l.loadavg.1min 2016-05-09T15:14:40Z 0.53
us-west.dbserver03.rss 2016-05-09T15:14:30Z 1572864
us-west.dbserver03.rss 2016-05-09T15:15:00Z 2097152

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 46

Time Series — Design Criteria

» Insert Performance (throughput & latency)

» Read Performance (throughput & latency)
o What kind of queries are you doing?
= Look at all metrics at a specific time
= Look at one metric across a long span of time

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 47

Time Series — Common Patterns

» Datapoints are inserted in time order across all series

» Reads specify a series and a time range, containing hundreds to many
thousands of datapoints

SELECT time, value FROM timeseries
WHERE series = "us-west.dbserver03.rss”
AND time >= 2016-05-08T00:00:00;

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 48

Reminder: Partitioning vs Indexing

Partitioning: how datapoints are distributed among partitions
Kudu: tablet
HBase: region
Cassandra: VNode

Indexing: how data within a single partition is sorted

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 49

Reminder: Partitioning vs Indexing

Partitioning: how datapoints are distributed among partitions

Kudu: tablet
HBase: region
Cassandra: VNode

Indexing: how data within a single partition is sorted

(us-east.appserver0l.loadavg, 2016-05-09T15:14:00Z)
(us-east.appserver0l.loadavg, 2016-05-09T15:15:00Z)
(us-west.dbserver03.rss, 2016-05-09T15:14:30Z)
(us-west.dbserver03.rss, 2016-05-09T15:14:30Z)

(series, time)

CLOUDZ=RA

2016-05-09T15:14:00Z, us-east.appserver0l.loadavg)
2016-05-09T15:14:30Z, us-west.dbserver03.rss)
2016-05-09T15:15:00Z, us-east.appserver0l.loadavg)
2016-05-09T15:14:30Z, us-west.dbserver03.rss)

—_— o~ —~ —

(time, series)

/ © 2019 Cloudera, Inc. All rights reserved. 50

Reminder: Partitioning vs Indexing

» Partitioning: how datapoints are distributed among partitions
o Kudu: tablet
o HBase: region
o Cassandra: VNode

» Indexing: how data within a single partition is sorted

(us-west.dbserver03.rss, 2016-05-09T15:14:30Z)
(us-west.dbserver03.rss, 2016-05-09T15:14:30Z)

(series, time) (time, series)
SELECT * WHERE series = ‘us-east.appserver0l.loadavg’;
CLOUD=RA

© 2019 Cloudera, Inc. All rights reserved. 51

Partitioning

» Kudu has flexible policies for distributing data among partitions
o Hash partitioning is built in, and can be combined with range
partitioning
» Goal: acceptable distribution of data across tablets at any given time
» Goal: allow expected scans to prune tablets

» Indexing is independent of partitioning!!!

p—— Vo W 3
CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 52

Partitioning — By Time Range

time

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 53

Partitioning — By Time Range (inserts)

time

All Inserts go to Latest Partition

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 54

Partitioning — By Time Range (scans)

time

Big scans (across large time intervals)
can be parallelized across many partitions

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 55

Partitioning — By Series Range

series

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 56

Partitioning — By Series Range (inserts)

series

Inserts are spread among all partitions

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 57

Partitioning — By Series Range (scans)

series

Scans are over a single partition

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 58

Partitioning — By Series Range

<

Partitions can become unbalanced,
resulting in hot spotting

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 59

Partitioning — By Series Hash

hash (series)

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 60

Partitioning — By Series Hash (inserts)

hash (series)

Inserts are spread among all partitions

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 61

Partitioning — By Series Hash (scans)

hash (series)

Scans are over a single partition

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 62

Partitioning — By Series Hash

hash (series)

Partitions grow overtime, eventually
becoming too big for a single server

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 63

Partitioning — By Series Hash + Time Range

hash (series)

time

CLOUDZ=RA

© 2019 Cloudera, Inc. All rights reserved. 64

.

Partitioning — By Series Hash + Time Range (inserts)

hash (series)

time

Inserts are spread among all partitions

in the latest time range
CLOUDZ=RA © 2019 Cloudera, Inc. All rights reserved. 65

Partitioning — By Series Hash + Time Range (scans)

hash (series)

/ I

Big scans (across large time intervals)

can be parallelized across partitions
CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 66

.
=

time

Spark SQL and Nifi walkthrough

Deploy some Spark

Deploy some Nifi
777

Profit

CLOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 67

Spark DataSource optimizations

Column projection and predicate pushdown
Only read the referenced columns
Convert ‘WHERE' clauses into Kudu predicates
Kudu predicates automatically convert to primary key scans, etc

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 68

Spark DataSource optimizations

Predicate pushdown

scala> sqlContext.sql("select avg(value) from metrics where host = 'e1103.halxg.cloudera.com'").explain
== Physical Plan ==

TungstenAggregate(key=[], functions=[(avg(value#3),mode=Final,isDistinct=false)], output=[_c0#94])

+- TungstenExchange SinglePartition, None

+- TungstenAggregate(key=[], functions=[(avg(value#3),mode=Partial,isDistinct=false)],
output=[sum#98, count#99L])

+- Project [value#3]

+- Scan org.apache.kudu.spark.kudu.KuduRelation@e13cc49[value#3]
PushedFilters: [EqualTo(host,e1103.halxg.cloudera.com)]

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved.

69

Spark DataSource optimizations

Partition pruning

scala> df.where("host like 'foo%'").rdd.partitions.length
res1: Int = 20

scala> df.where("host = 'foo
res2: Int = 1

).rdd.partitions.length

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 70

Writing via Spark

// Use KuduContext to create, delete, or write to Kudu tables
val kuduContext = new KuduContext("kudu-master:7051,kudu-master:7151,kudu-master:7251")

// Create a new Kudu table from a dataframe schema
// NB: No rows from the dataframe are inserted into the table
kuduContext.createTable("test_table", df.schema, Seq("key"), new CreateTableOptions().setNumReplicas(1))

// Insert, delete, upsert, or update data

kuduContext.insertRows(df, "test_table")

kuduContext.deleteRows(sqlContext.sql("select id from kudu_table where id >= 5"), "kudu_table")
kuduContext.upsertRows(df, "test_table")

kuduContext.updateRows(df.select(“id”, $"count” + 1, "test_table")

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 71

Spark SQL and Nifi walkthrough
https://github.com/andrwng/boss19

Deploy some Spark

Deploy some Nifi
777

Profit

C LOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 72

Interesting pattern: Hierarchical storage

Return of the Lambda? (but longer time scale)

» Use Impala to periodically (e.g. I U';iﬁed View

every month) move data from (
Kudu into cold storage

o Query both hot Kudu data and
colder HDFS and Cloud data
with a view

» Simpler primitives than before

—

=
~—

| Y
Excellent blog post: Kudu HDFS Cloud

https://kudu.apache.org/2019/03/05/transparent-hierarchical-
storage-management-with-apache-kudu-and-impala.html
/ © 2019 Cloudera, Inc. All rights reserved 73

CLOUDZ=RA

https://kudu.apache.org/2019/03/05/transparent-hierarchical-storage-management-with-apache-kudu-and-impala.html
https://kudu.apache.org/2019/03/05/transparent-hierarchical-storage-management-with-apache-kudu-and-impala.html

Thank you!

Twitter: @ApacheKudu
Slack: https://getkudu-slack.herokuapp.com/
Website: kudu.apache.orq

Questions?
awong@cloudera.com

CLOUDZ=RA / © 2019 Cloudera, Inc. All rights reserved. 74

https://getkudu-slack.herokuapp.com/
http://kudu.apache.org
mailto:awong@cloudera.com

