From Zero to Hero with Apache Kudu

BOSS 2019
Andrew Wong
Follow along with the walkthroughs!
https://github.com/andrwng/boss19
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Who am I?
Andrew Wong

» Software engineer at Cloudera (awong(@cloudera.com)
o Apache Kudu PMC Member

Some Kudu things | have worked on:

» Scan optimizations

» Disk failure mitigation

» Integration with Hive Metastore (external catalog)
» Fine-grained authorization
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Traditional big data storage leaves a gap

Use cases fall between HDFS and HBase were difficult to manage
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Traditional big data storage leaves a gap

Use cases fall between HDFS and HBase were difficult to manage
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“Traditional” real-time analytics

Have we
accumulated
enough data?

Reorganize
HBase file
into Parquet

CLOUDZ=RA

Immutable Storage

* Wait for running operations to
complete

* Define new partition referencing

the newly written Parquet file

Considerations:

e How do I handle failure
during this process?

e How often do | reorganize
data streaming in into a

Reporting format appropriate for
Request reporting?

e When reporting, how do |
see data that has not yet
been reorganized?

e How do I ensure that
important jobs aren't
interrupted by
maintenance?
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Real-time analytics with Kudu

Storage in Kudu

Improvements:

e Much simpler architecture
e Significantly easier to handle
late arrivals of data

: e New data available
Reporting . diately f i r
Request imme .'a ely Tor analytics o
operatlons

Incoming data
(e.g. Kafka,
Spark, Impala)
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What is Apache Kudu?

Mutable data storage engine, designed for analytics on real-time data

MUTABLE
STORAGE
ANALYTICS

REAL-TIME DATA

C LOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 7



What is Apache Kudu?

Mutable data storage engine, designed for analytics on real-time data

MUTABLE
STORAGE
ANALYTICS

REAL-TIME DATA

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 8



What is Apache Kudu?

Mutable data storage engine, designed for analytics on real-time data

MUTABLE
STORAGE
ANALYTICS

REAL-TIME DATA

CLOUD=RA / / © 2019 Cloudera, Inc. All rights reserved. 9



What is Apache Kudu?

Mutable data storage engine, designed for analytics on real-time data

MUTABLE
STORAGE
ANALYTICS

REAL-TIME DATA

CLOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 10



What is Apache Kudu?

Mutable data storage engine, designed for analytics on real-time data

MUTABLE
STORAGE
ANALYTICS

REAL-TIME DATA

CLOUD=RA / © 2019 Cloudera, Inc. All rights reserved. 11



“Big deal... Aren’t there a ton of big data systems out there?”

Yes there are.

Open source
Parquet on HDFS, object storage
HBase/Cassandra
TiDB with TiFlash
etc.
Proprietary
Vertica, Teradata, SAP
Spanner
Redshift
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Why else did we build Kudu?

Changing hardware landscape

» Spinning disks --> solid state storage
> NAND flash: up to 450k read, 250k write IOPS, ~2GB/s read and
~1.5GB/s write throughput, at under $1/GB
> PMEM: order of magnitude faster than NAND, cheaper than RAM
« RAM is getting cheaper and more abundant
o 128 —>256 --> 512 GB over the last few years

Takeaway: The next bottleneck is CPU, and current storage systems weren't
designed with CPU efficiency in mind.
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Scalable and fast tabular storage

Scalable

o Production clusters with hundreds of nodes
o Onthe order of hundreds of TBs to low PBs

Fast

o Written primarily in C++
» Millions of write operations per second across cluster
» Multiple GB/s read throughput per node

Tabular
o Strict schema, finite column count, no BLOBs

CLOUDZ=RA
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And we've got some friends!
Apache and CNCF

APACHE

Spark
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And we've got some friends!
Apache and CNCF
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The rest of the Ecosystem isn’t that scary

Somewhat clear lines between roles

Ingest: n I @:

NiFi, Spark Streaming, Flink, Kafka, Flume
Storage:

Kudu
Previously HBase, HDFS, and a lot of cron jobs

Querying:
Impala, Hive, Spark SQL ( % ‘I\Z
\ Q APACHE
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From Zero to Hero with Apache Kudu
Agenda

Start with the basics:

Introduction to Kudu’s data model
Distributed architecture

Jump into more complex things:

Schema design exercises
Partitioning in Kudu

Deploy a small “big data” pipeline:
Spark, Nifi

CLOUDZ=RA
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From Zero to Hero with Apache Kudu

If you can

Pull from GitHub:
apache/kudu:master

Pull from DockerHub:
apache/kudu:latest

brew install apache-spark
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A primer on Kudu concepts
What is “data” to Kudu?

Table: prominent abstraction for users -- a set of uniquely identifiable rows
Schema: describes the columns and ordering of the rows of a table
» Subset of columns defined as “primary key”
Partition schema: describes the partitions of a table
» Subset of primary key defined as “partition key”
Tablet: partition of a table; the logical unit of replication and parallelization

» Underlying data stored in sorted order by primary key
» Tablet replicas are dispersed among servers in a cluster
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What makes a tablet?
Very much LSM-inspired

Write-ahead log: as writes come in, they are written in fast, row-oriented storage

Mem-Rowset: as writes are written to the WAL, they are also applied to an
in-memory, row-oriented B-Tree

Periodic flushes: as the mem-rowset grows large, there are periodic flushes to
free up memory and transition the mem-rowset to a disk-rowset

Many Disk-Rowsets: represented as an interval tree for lookups
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What makes a tablet?

Wait what is “LSM"? You said we're starting from zero!

» LSM: Log Structured Merge (Cassandra, HBase, etc)

> Inserts and updates all go to an in-memory map (MemStore) and later
flush to on-disk files (HFile/SSTable)

o Reads perform an on-the-fly merge of all on-disk HFiles
o Kudu
o Shares some traits (memstores, compactions)
o More complex.
- Slower writes in exchange for faster reads (especially scans)
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What makes a tablet?

And more!

B-Tree index per rowset to enable search on a primary key
Bloom filter per rowset to enable lookups for deduplication of rows
CFiles the actual columnar data, in primary key order

Deltas (updates and deletes)

» In-memory delta store per rowset

» On-disk delta stores per rowset

» New updates are represented as REDO records, periodically flushed to
UNDO records to avoid REDO traversal
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What makes a tablet?

Overview
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Maintenance Manager

Always be flushing and compacting!

» The maintenance manager handles background tasks
o Flushing the MRS or DMS to disk
o Compactions
o WAL GC

» A maintenance manager thread decides what task to perform using a
cost-based optimization model

o Prefers flushing when the server is under memory pressure
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Distributed architecture

Main roles in Kudu

Master: a server that hosts Kudu system metadata and catalog information
Tablet server: a server that hosts tablet replicas
Client: an application that inserts to or reads from Kudu

» Tooling

o C++ application

o Java

° Python

o Spark

» Impala
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Let’s walk through deploying Kudu!
https://github.com/andrwng/boss19

Explore a single node deployment of Kudu
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Distributed architecture

Replication, replication, replication!

replication

replication ' replication
replication Tablet Server replication

replication

Tablet Server Tablet Server

CLOU D=RA / © 2019 Cloudera, Inc. All rights reserved. 28



Distributed architecture

Replication, replication, replication!

replication

replication replication

heartbeat heartbeat heartbeat heartbeat heartbeat

cee Tablet Server replication Tablet Server replication Tablet Server ce e

replication
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Distributed architecture

Replication, replication, replication!

replication

replication replication

N

heartbeat heartbeat heartbeat

Tablet Server replication Tablet Server reglication

metadata

heartbeat

o 3 —
replidation

data data data
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Raft consensus

Consensus protocol to replicate data

Leaders constantly heartbeating
to followers

Leader elections triggered when
a follower doesn’t hear back
from leader

Write operations go to leader
first and are replicated to
followers
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Raft consensus

2b. Leader writes local WAL

6. Leader->Client: Success!
‘

1a. Client->Leader: Write() RPC 5. Leader has achieved majority

3'14. Follower->Leader: success

(FOLLOWER) (FOLLOWER)

3. Follower: write WAL 3. Follower: write WAL
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Dealing with node failures

Wait long enough, and Kudu heals itself!

If a Raft leader notices that it
hasn't heard from one of its
replicas in a while, it will try to
create a new replica

Physical copy of leader sent to
new replica

Old replica is removed from Raft
configuration
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Master details

» Alltable and tablet metadata is stored in a single tablet

o Special tablet ID: 00000000000000000000000000000000
« Like any other tablet, the metadata tablet is replicated via Raft
» Master is effectively a tablet server for this one tablet
» Failure handling

o Transient failures are handled transparently

o Permanent failures require operator intervention
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Balance and Skew

Tablet replica placement controlled by the master based on its view of the world

» Placement uses “Power of Two Choices” algorithm to even out replica
count across cluster
o Select two tablet servers, pick the one with fewer tablet replicas
» Rebalancer tool can be run to redistribute replicas in case of skew
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Cluster health

kudu cluster ksck <masters>

When operating Kudu, this is your lifeline!

Tells you:

o What servers exist

» What tables and tablets exist

» What tablet are under-replicated and recovering
o What the skew on the cluster is like

» What non-default flags are set

CLOUDZ=RA
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Client abstractions

Sessions:
« In-memory write buffers, eventually get “flushed” to the servers

Scanners:
o Fetches rows one batch at a time
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Client abstractions (writes)

KuduTable table = client.openTable(“metrics”);
KuduSession session = client.newSession();

Insert ins = table.newlnsert();

ins.getRow() .addString(“host”, “foo.example.com”);
ins.getRow().addString(“metric”, “load-avg.lsec”);
ins.getRow() .addDouble(“value”, 0.065);
session.apply(ins);

session.flush();
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Client abstractions (scans)

KuduScanner scanner = client.newScannerBuilder(table)
.setProjectedColumnNames(Lists.of(“value”))
.build();

while (scanner.hasMoreRows()) A{
RowResultIterator batch = scanner.nextRows();

while (batch.hasNext()) {
RowResult result = batch.next();

System.out.println(result.getDouble(“value”));
}
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Client abstractions (scans, but with predicates!)

KuduScanner scanner = client.newScannerBuilder(table)
.addPredicate(KuduPredicate.newComparisonPredicate(
table.getSchema().getColumn(“timestamp”),
ComparisonOp.GREATER,
System.currentTimeMillis() / 1060 + 60))
.build();

Note: Kudu can evaluate simple predicates, but no aggregations, complex
expressions, UDFs, etc.
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Client cluster interaction

Master

» Tablet metadata fetched from the master, including locations and
partitioning info

» Tablets are “pruned” via partitioning info so only the appropriate tablets are
scanned

Tablet servers

» Requests sent to tablet servers
» Rejected if appropriate
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Client consistency models

Choose the one which fits your workload!

o READ_LATEST (default mode)

o Read committed state immediately
» READ_AT_SNAPSHOT

o Consistent and repeatable

o This allows strict-serializable semantics for reads and writes
o READ_YOUR_WRITES (Kudu 1.7 and up)

o Ensures all previously read and written values are read

o Not repeatable
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Master tablet

e Bl Hey Master! Where is the row for  —
eta Cache . . M
‘tlipcon’ in table “T”? Sorsi

»
e

It’s part of tablet 2, which is on servers {Z,Y,X}. | yaster

BTW, here’s info on other tablets you might ~ [¥"®
care about: T1,T2, T3, ...
Master
. Tablet 1 Tablet2 .-  Tabletn Server C
UPDATE tlipcon
SET CO|=fOO Tablet 1 | E Tablet
‘ LEADER { ! Server W
; i E Tablet
E;‘l’a&l)e‘;v:sa | ! Server X
Tablet 1 i 1 Tablet 3 Tablet
OWER : : LEADER ServerY
E :|] e \ ! l | Tablet
E LTE:::‘Efa ! "Tafc'f\'ﬂ?m ServerZ
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Continuing the walkthrough!
https://github.com/andrwng/boss19

Explore a multinode deployment
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Time Series

To demonstrate advanced table partitioning techniques, we are going to think
through a table for time series storage of machine metrics.

Series » Time » Value
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Time Series

—

us-east.appserverOl.loadavg.1min 2016-05-09T15:14:30Z 0.44

us-east.appserver0l.loadavg.1min 2016-05-09T15:14:40Z 0.53
us-west.dbserver03.rss 2016-05-09T15:14:30Z 1572864
us-west.dbserver03.rss 2016-05-09T15:15:00Z 2097152
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Time Series — Design Criteria

» Insert Performance (throughput & latency)

» Read Performance (throughput & latency)
o What kind of queries are you doing?
= Look at all metrics at a specific time
= Look at one metric across a long span of time
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Time Series — Common Patterns

» Datapoints are inserted in time order across all series

» Reads specify a series and a time range, containing hundreds to many
thousands of datapoints

SELECT time, value FROM timeseries
WHERE series = "us-west.dbserver03.rss”
AND time >= 2016-05-08T00:00:00;
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Reminder: Partitioning vs Indexing

Partitioning: how datapoints are distributed among partitions
Kudu: tablet
HBase: region
Cassandra: VNode

Indexing: how data within a single partition is sorted
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Reminder: Partitioning vs Indexing

Partitioning: how datapoints are distributed among partitions

Kudu: tablet
HBase: region
Cassandra: VNode

Indexing: how data within a single partition is sorted

(us-east.appserver0l.loadavg, 2016-05-09T15:14:00Z)
(us-east.appserver0l.loadavg, 2016-05-09T15:15:00Z)
(us-west.dbserver03.rss, 2016-05-09T15:14:30Z)
(us-west.dbserver03.rss, 2016-05-09T15:14:30Z)

(series, time)
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2016-05-09T15:14:00Z, us-east.appserver0l.loadavg)
2016-05-09T15:14:30Z, us-west.dbserver03.rss)
2016-05-09T15:15:00Z, us-east.appserver0l.loadavg)
2016-05-09T15:14:30Z, us-west.dbserver03.rss)
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(time, series)
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Reminder: Partitioning vs Indexing

» Partitioning: how datapoints are distributed among partitions
o Kudu: tablet
o HBase: region
o Cassandra: VNode

» Indexing: how data within a single partition is sorted

(us-west.dbserver03.rss, 2016-05-09T15:14:30Z)
(us-west.dbserver03.rss, 2016-05-09T15:14:30Z)

(series, time) (time, series)
SELECT * WHERE series = ‘us-east.appserver0l.loadavg’;
CLOUD=RA

© 2019 Cloudera, Inc. All rights reserved. 51



Partitioning

» Kudu has flexible policies for distributing data among partitions
o Hash partitioning is built in, and can be combined with range
partitioning
» Goal: acceptable distribution of data across tablets at any given time
» Goal: allow expected scans to prune tablets

» Indexing is independent of partitioning!!!

p—— Vo W 3
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Partitioning — By Time Range

time
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Partitioning — By Time Range (inserts)

time

All Inserts go to Latest Partition
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Partitioning — By Time Range (scans)

time

Big scans (across large time intervals)
can be parallelized across many partitions
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Partitioning — By Series Range

series
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Partitioning — By Series Range (inserts)

series

Inserts are spread among all partitions
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Partitioning — By Series Range (scans)

series

Scans are over a single partition
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Partitioning — By Series Range

<

Partitions can become unbalanced,
resulting in hot spotting
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Partitioning — By Series Hash

hash (series)
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Partitioning — By Series Hash (inserts)

hash (series)

Inserts are spread among all partitions
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Partitioning — By Series Hash (scans)

hash (series)

Scans are over a single partition
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Partitioning — By Series Hash

hash (series)

Partitions grow overtime, eventually
becoming too big for a single server
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Partitioning — By Series Hash + Time Range

hash (series)

time

CLOUDZ=RA
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Partitioning — By Series Hash + Time Range (inserts)

hash (series)

time

Inserts are spread among all partitions

in the latest time range
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Partitioning — By Series Hash + Time Range (scans)

hash (series)

/ I

Big scans (across large time intervals)

can be parallelized across partitions
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Spark SQL and Nifi walkthrough

Deploy some Spark

Deploy some Nifi
777

Profit
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Spark DataSource optimizations

Column projection and predicate pushdown
Only read the referenced columns
Convert ‘WHERE' clauses into Kudu predicates
Kudu predicates automatically convert to primary key scans, etc
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Spark DataSource optimizations

Predicate pushdown

scala> sqlContext.sql("select avg(value) from metrics where host = 'e1103.halxg.cloudera.com'").explain
== Physical Plan ==

TungstenAggregate(key=[], functions=[(avg(value#3),mode=Final,isDistinct=false)], output=[_c0#94])

+- TungstenExchange SinglePartition, None

+- TungstenAggregate(key=[], functions=[(avg(value#3),mode=Partial,isDistinct=false)],
output=[sum#98, count#99L])

+- Project [value#3]

+- Scan org.apache.kudu.spark.kudu.KuduRelation@e13cc49[value#3]
PushedFilters: [EqualTo(host,e1103.halxg.cloudera.com)]
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Spark DataSource optimizations

Partition pruning

scala> df.where("host like 'foo%'").rdd.partitions.length
res1: Int = 20

scala> df.where("host = 'foo
res2: Int = 1

).rdd.partitions.length
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Writing via Spark

// Use KuduContext to create, delete, or write to Kudu tables
val kuduContext = new KuduContext("kudu-master:7051,kudu-master:7151,kudu-master:7251")

// Create a new Kudu table from a dataframe schema
// NB: No rows from the dataframe are inserted into the table
kuduContext.createTable("test_table", df.schema, Seq("key"), new CreateTableOptions().setNumReplicas(1))

// Insert, delete, upsert, or update data

kuduContext.insertRows(df, "test_table")

kuduContext.deleteRows(sqlContext.sql("select id from kudu_table where id >= 5"), "kudu_table")
kuduContext.upsertRows(df, "test_table")

kuduContext.updateRows(df.select(“id”, $"count” + 1, "test_table")
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Spark SQL and Nifi walkthrough
https://github.com/andrwng/boss19

Deploy some Spark

Deploy some Nifi
777

Profit
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Interesting pattern: Hierarchical storage

Return of the Lambda? (but longer time scale)

» Use Impala to periodically (e.g. I U';iﬁed View

every month) move data from (
Kudu into cold storage

o Query both hot Kudu data and
colder HDFS and Cloud data
with a view

» Simpler primitives than before

—

=
~—

| Y
Excellent blog post: Kudu HDFS Cloud

https://kudu.apache.org/2019/03/05/transparent-hierarchical-
storage-management-with-apache-kudu-and-impala.html
/ © 2019 Cloudera, Inc. All rights reserved 73
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Thank you!

Twitter: @ApacheKudu
Slack: https://getkudu-slack.herokuapp.com/
Website: kudu.apache.orq

Questions?
awong@cloudera.com
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