
Tuning and Programming 
Data-Intensive Systems 

with OX and Open-Channel SSDs
Ivan Luiz Picoli1,2, Philippe Bonnet1

ivpi@itu.dk; phbo@itu.dk

1IT University of Copenhagen
2Samsung Semi-conductor Division Research (SSDR) Lab

mailto:ivpi@itu.dk
mailto:phbo@itu.dk


Agenda

• Open-Channel SSDs Primer
• OX Primer
• Hands-on Labs



Open-Channel SSD: The Idea

• Physical address space exposed to the host
• Read, write, erase
• SSD Parallelism

• Hosts can make decisions about data placement and I/O scheduling
• SSD management split between

• Back-end (embedded on SSD): Block meta-data and wear levelling (for warrantee)
• Front-end (host-based): Flash Translation Layer

• Mapping of logical to physical address spaces
• Manage overprovisioning and garbage collection



Open-Channel SSD: The Interface
Chunk Model Vector Chunk Write/Read:

• Vectored IO
• writes logical blocks 

sequentially within 
chunks

• Limited Retry option
Vector Chunk Erase
Vector Chunk Copy:

• Copies from one set of 
LBA to another within 
the device.

Asynchronous Event Info



Open-Channel SSD: The Architecture

Traditional SSD FTL Open-Channel SSD

FTL
e.g. pblk

Storage

OS Kernel

File System

Block Layer

NVMe Driver NVMe Driver

LightNVM

User-space
liblightNVMPOSIX

Open-Channel SSD

NVMe Driver

LightNVM

liblightNVM

SPDK FTL



Open-Channel SSD: The Potential Impact

WHAT?
1. I/O Isolation

• Enable host management of device internal resources for contention avoidance
• Control latency predictability -- beyond NVMe IOD (IO Determinism)

2. Resource Utilization
• Controlled data placement to reduce Write Amplification (WA) – beyond NVMe streams

3. Streamline data path
• Application-Specific FTL

HOW?
Computational storage

• Offload CPU
• Shield host application from complexity of managing the physical space (e.g., flash characteristics)
• Co-design of Application-specific FTL and Open-Channel SSD



OX: The idea

LSM Management on Computational Storage, DaMoN ‘19

Computation on 
top of Generic 

FTL

Computation on 
Application-
specific FTL

OX: Framework 
for Application-
Specific FTLs on 
computational 

storage



OX: The Architecture

U

B

M



OX: The Architecture

U

B

M



OX: Status

• OX v2.6 just released
• https://github.com/DFC-OpenSource/ox-ctrl/releases/tag/v2.6

• OX developed and tested 
• on DFC (PCIex8 or 40GE, NXP LS2088 Soc (ARMv8) + DDR3 DRAM + M.2 connectors)

• being ported on Broadcom stingray (100GE with hw ROCE, ARMv8, DDR4 DRAM + PCIex8)

• With OCSSD Spec v1

• OX equipped with
• OX-Block: generic FTL in user-space
• OX-ELEOS: log-structured storage for LLAMA (not public)
• LightLSM: computational storage for RocksDB (not public)

LSM Management on Computational Storage, DaMoN ’19
Improving CPU I/O Performance via SSD Controller FTL Support for Batched Writes, DaMoN’19

https://github.com/DFC-OpenSource/ox-ctrl/releases/tag/v2.6


Hands-On Lab

• Ubuntu
• Local install
• Contact us if you need access to a remote machine

• Dependencies
$ sudo apt-get install build-essential

• Ubuntu 16
$ sudo apt-get install cmake libreadline6 libreadline6-dev

• Ubuntu 18
$ sudo apt-get install cmake libreadline-dev 



Hands-on Lab #0
Installation:

Possible Ubuntu packages: 
$ sudo apt-get install cmake libreadline6 libreadline6-dev 

Install OX: 
$ git clone https://github.com/ivpi/ox-ctrl.git
$ cd ox-ctrl
$ git checkout ox-public 
$ mkdir build
$ cd build
$ cmake -DVOLT_GB=4 .. (up to 32) 
$ sudo make install

https://github.com/ivpi/ox-ctrl.git


Hands-on Lab #0
Terminal 0: 
$ cd <ox-ctrl>/build
$ ./ox-ctrl-nvme-volt start 

Wait until you see OX startup
Try some commands: 
> help
> show memory
> show io
> show gc 
> show cp
> debug on 
> debug off
> show mq status 
> exit

Terminal 1: 
$ cd <ox-ctrl>/build
Write 20000 4K-blocks starting from block 1 
$ ./ox-test-nvme-thput-w 1 20000 
Read what you wrote: 
$ ./ox-test-nvme-thput-r 1 20000 
Run again, with 'show io’ activated on Terminal 0



Hands-on Lab#0

Terminal 1:

Terminal 0:



Hands-on Lab #1

Experiment with different types of Open-Channel SSDs:
• Same workload
• Different Volt setups

• Different SSD topologies (nb channels, nb LUN/channel)
• Different latency characteristics
• Different storage chip characteristics (nb planes)



Hands-on Lab #2

Collection of test programs as entry points to OX framework 
• test-connect.c
• test-nvme-rw.c
• test-nvme-thput-r.c
• test-nvme-thput-w.c
• test-ox-mq.c
• test-queue.c

Experiment with NVMe submission/completion:
• Modify test-nvme-rw.c to submit 10 random writes
• Hint: check how test-nvme-thput-w.c handles sequential writes

Experiment with OX API:
• Add NVMe command (e.g., swap-lbas)

• Extend parser (nvme_parser) to create the command that accesses and modifies the mapping table (ftl) and returns completion
• Write test program for the new command


