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Apache Spark

• The most popular and de-facto framework for big data (science)
• APIs in SQL, R, Python, Scala, Java
• Support for SQL, ETL, machine learning/deep learning, graph …

• This tutorial (with hands-on components):
• Brief Intro to Spark’s DataFrame/Dataset API (and internals)
• Deep Dive into Structured Streaming
• Deep Learning for the Masses (with simple APIs and less data to train)



Who is this guy?

#1 committer on Spark project
Databricks Cofounder & Chief Architect

UC Berkeley AMPLab PhD (on leave since 2013)



Some Setup First

• https://community.cloud.databricks.com

• http://tinyurl.com/vldb2017



• RDD
– Old, basic abstraction (in NSDI paper)

• ML Pipelines
– Self-evident

Abstractions in Spark 2.0+

• DataFrame
– Similar to relational table
– Imperative-like programming model, 

but declarative
– Supports both batch and streaming

• Dataset
– DataFrame, with compile-time type 

safety



DataFrame

• Distributed collection of data grouped into named columns (i.e. 
RDD with schema)
• DSL designed for common tasks
• Metadata
• Sampling
• Project, filter, aggregation, join, …
• UDFs

• Available in Python, Scala, Java, and R (via SparkR)



DataFrame Internals (SIGMOD’15)

• Represented internally as a “logical plan”

• Execution is lazy, allowing it to be optimized by a query 
optimizer
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Plan Optimization & Execution



HyPer-inspired Whole Stage Code Generation



Scan

Filter

Project

Aggregate

select count(*) from store_sales
where ss_item_sk = 1000



Volcano Iterator Model

Standard for 30 years: almost 
all databases do it

Each operator is an “iterator” 
that consumes records from 
its input operator

class Filter {
def next(): Boolean = {
var found = false
while (!found && child.next()) {
found = predicate(child.fetch())

}
return found

}

def fetch(): InternalRow = {
child.fetch()

}
…

}



What if we hire a college freshman to
implement this query in Java in 10 mins?

select count(*) from store_sales
where ss_item_sk = 1000

var count = 0
for (ss_item_sk in store_sales) {
if (ss_item_sk == 1000) {
count += 1

}
}



Volcano model
30+ years of database research

college freshman
hand-written code in 10 minsvs



Volcano 13.95 million
rows/sec

college
freshman

125 million
rows/sec

Note: End-to-end, single thread, single column, and data originated in Parquet on disk

High throughput



How does a student beat 30 years of research?

Volcano

1. Many virtual function calls

2. Data in memory (or cache)

3. No loop unrolling, SIMD, pipelining

hand-written code

1. No virtual function calls

2. Data in CPU registers

3. Compiler loop unrolling, SIMD, 
pipelining

Take advantage of all the information that is known after query compilation



Whole-stage Codegen

Fusing operators together so the generated code looks like hand 
optimized code:

- Identity chains of operators (“stages”)
- Compile each stage into a single function
- Functionality of a general purpose execution engine; performance 

as if hand built system just to run your query



Whole-stage Codegen: Planner



Scan

Filter

Project

Aggregate
long count = 0;
for (ss_item_sk in store_sales) {
if (ss_item_sk == 1000) {
count += 1;

}
}

Whole-stage Codegen: Spark as a “Compiler”



Exercise
http://tinyurl.com/vldb2017



Easy, Scalable, Fault-tolerant 
Stream Processing with 
Structured Streaming



building robust 
stream processing 

apps is hard



Complexities in stream processing

COMPLEX DATA

Diverse data formats 
(json, avro, binary, …)

Data can be dirty, 
late, out-of-order

COMPLEX SYSTEMS

Diverse storage systems 
(Kafka, S3, Kinesis, RDBMS, …)

System failures

COMPLEX WORKLOADS

Combining streaming with 
interactive queries

Machine learning



Structured Streaming

stream processing on Spark SQL engine
fast, scalable, fault-tolerant

rich, unified, high level APIs 
deal with complex data and complex workloads

rich ecosystem of data sources
integrate with many storage systems 



you 
should not have to 

reason about streaming



you 
should write simple queries

&

Spark 
should continuously update the answer



Treat Streams as Unbounded Tables

data stream unbounded input table

new data in the 
data stream

= 
new rows appended 
to a unbounded table



static data =
bounded table

streaming data =
unbounded table

Single 
API !

Table ó Dataset/DataFrame



Batch Queries with DataFrames
input = spark.read

.format("json")

.load("source-path")

result = input
.select("device", "signal")
.where("signal > 15")

result.write
.format("parquet")
.save("dest-path")

Create input DF from Json file

Create result DF by querying for 
some devices to create 

Output result to parquet file

Result
Table

Input
Table

Query

Output



input = spark.readStream
.format("json")
.load("source-path")

result = input
.select("device", "signal")
.where("signal > 15")

result.writeStream
.format("parquet")
.start("dest-path")

Create input DF from Kafa
Replace read with readStream

Select some devices
Query does not change

Write to Parquet file stream
Replace save() with start()

Result
Table

Input
Table

Query

Output

Streaming Queries with DataFrames



Conceptual Model
t = 1 t = 2 t = 3

Result

Q
ue

ry

Time

Input data up
to t = 3

result up 
to t = 3

data up
to t = 1

data up
to t = 2

result up 
to t = 1

result up 
to t = 2

As the input table grows 
with new data, the result 
table changes

Every trigger interval, we 
can output the changes in 
the result

Trigger: every 1 sec

Output



Conceptual Model
t = 1 t = 2 t = 3

Result

Q
ue

ry

Time

Input data up
to t = 3

result up 
to t = 3

data up
to t = 1

data up
to t = 2

result up 
to t = 1

result up 
to t = 2

Output mode defines 
what changes to output

Complete mode outputs 
the entire result

Complete
Output



Conceptual Model
t = 1 t = 2 t = 3

Result

Q
ue

ry

Time

Input data up
to t = 3

result up 
to t = 3

data up
to t = 1

data up
to t = 2

result up 
to t = 1

result up 
to t = 2

Output mode defines 
what changes to output

Append mode outputs 
new tuples only

Update mode output 
tuples that have changed 
since the last trigger Append

Output



Conceptual Model
t = 1 t = 2 t = 3

Result

Incremental 
Query

Time

Input data up
to t = 3

result up 
to t = 3

data up
to t = 1

data up
to t = 2

result up 
to t = 1

result up 
to t = 2

Append
Output

Full input does not need 
to be processed every 
trigger

Engine converts query
to an incremental query
that operates only on 
new data to generate 
output



Streaming word count

Anatomy of a Streaming Query



Anatomy of a Streaming Query
spark.readStream
.format("kafka")
.option("subscribe", "input")
.load()
.groupBy($"value".cast("string"))
.count()
.writeStream
.format("kafka")
.option("topic", "output")
.trigger("1 minute")
.outputMode(OutputMode.Complete())
.option("checkpointLocation", "…")
.start()

Source 

• Specify one or more locations 
to read data from

• Built in support for 
Files/Kafka/Socket, 
pluggable.

• Can include multiple sources 
of different types using 
union()



Anatomy of a Streaming Query
spark.readStream
.format("kafka")
.option("subscribe", "input")
.load()
.groupBy('value.cast("string") as 'key)
.agg(count("*") as 'value)
.writeStream
.format("kafka")
.option("topic", "output")
.trigger("1 minute")
.outputMode(OutputMode.Complete())
.option("checkpointLocation", "…")
.start()

Transformation

• Using DataFrames, 
Datasets and/or SQL.

• Catalyst figures out how to 
execute the transformation 
incrementally.

• Internal processing always 
exactly-once.



DataFrames,
Datasets, SQL

input = spark.readStream
.format("kafka")
.option("subscribe", "topic")
.load()

result = input
.select("device", "signal")
.where("signal > 15")

result.writeStream
.format("parquet")
.start("dest-path")

Logical 
Plan

Read from 
Kafka

Project
device, signal

Filter
signal > 15

Write to 
Kafka

Spark automatically streamifies!

Spark SQL converts batch-like query to a series of incremental 
execution plans operating on new batches of data

Series of Incremental
Execution Plans

Kafka 
Source

Optimized 
Operator
codegen, off-

heap, etc.

Kafka
Sink

Optimized
Physical Plan
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Anatomy of a Streaming Query
spark.readStream
.format("kafka")
.option("subscribe", "input")
.load()
.groupBy('value.cast("string") as 'key)
.agg(count("*") as 'value)
.writeStream
.format("kafka")
.option("topic", "output")
.trigger("1 minute")
.outputMode(OutputMode.Complete())
.option("checkpointLocation", "…")
.start()

Sink

• Accepts the output of each 
batch.

• When supported sinks are 
transactional and exactly 
once (Files).

• Use foreach to execute 
arbitrary code.



Anatomy of a Streaming Query
spark.readStream
.format("kafka")
.option("subscribe", "input")
.load()
.groupBy('value.cast("string") as 'key)
.agg(count("*") as 'value)
.writeStream
.format("kafka")
.option("topic", "output")
.trigger("1 minute")
.outputMode("update")
.option("checkpointLocation", "…")
.start()

Output mode – What's output
• Complete – Output the whole answer 

every time

• Update – Output changed rows

• Append – Output new rows only

Trigger – When to output
• Specified as a time, eventually 

supports data size

• No trigger means as fast as possible



Anatomy of a Streaming Query
spark.readStream
.format("kafka")
.option("subscribe", "input")
.load()
.groupBy('value.cast("string") as 'key)
.agg(count("*") as 'value)
.writeStream
.format("kafka")
.option("topic", "output")
.trigger("1 minute")
.outputMode("update")
.option("checkpointLocation", "…")
.start()

Checkpoint

• Tracks the progress of a 
query in persistent storage

• Can be used to restart the 
query if there is a failure.



Fault-tolerance with Checkpointing

Checkpointing – tracks progress 
(offsets) of consuming data from 
the source and intermediate state.

Offsets and metadata saved as JSON

Can resume after changing your 
streaming transformations

end-to-end 
exactly-once 
guarantees
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Complex Streaming ETL



Traditional ETL

Raw, dirty, un/semi-structured is  data dumped as files 

Periodic jobs run every few hours to convert raw data 
to structured data ready for further analytics

43

file
dump

seconds hours
table

10101010



Traditional ETL

Hours of delay before taking decisions on latest data

Unacceptable when time is of essence
[intrusion detection, anomaly detection, etc.]

file
dump

seconds hours
table

10101010



Streaming ETL w/ Structured Streaming 

Structured Streaming enables raw data to be available 
as structured data as soon as possible

45

seconds
table

10101010



Streaming ETL w/ Structured Streaming 

Example

Json data being received in Kafka

Parse nested json and flatten it

Store in structured Parquet table

Get end-to-end failure guarantees

val rawData = spark.readStream
.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

val parsedData = rawData
.selectExpr("cast (value as string) as json"))
.select(from_json("json", schema).as("data"))
.select("data.*")

val query = parsedData.writeStream
.option("checkpointLocation", "/checkpoint")
.partitionBy("date")
.format("parquet")
.start("/parquetTable")



Reading from Kafka

Specify options to configure

How?
kafka.boostrap.servers => broker1,broker2

What?
subscribe        =>  topic1,topic2,topic3   // fixed list of topics
subscribePattern =>  topic* // dynamic list of topics
assign =>  {"topicA":[0,1] }  // specific partitions

Where?
startingOffsets => latest(default) / earliest / {"topicA":{"0":23,"1":345} }

val rawData = spark.readStream
.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()



Reading from Kafka

val rawData = spark.readStream
.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

rawData dataframe has 
the following columns

key value topic partition offset timestamp

[binary] [binary] "topicA" 0 345 1486087873

[binary] [binary] "topicB" 3 2890 1486086721



Transforming Data

Cast binary value to string
Name it column json

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")



Transforming Data

Cast binary value to string
Name it column json

Parse json string and expand into 
nested columns, name it data

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

json

{ "timestamp": 1486087873, "device": "devA", …}

{ "timestamp": 1486082418, "device": "devX", …}

data (nested)

timestamp device …

1486087873 devA …

1486086721 devX …

from_json("json")
as "data"



Transforming Data

Cast binary value to string
Name it column json

Parse json string and expand into 
nested columns, name it data

Flatten the nested columns

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

data (nested)

timestamp device …

1486087873 devA …

1486086721 devX …

timestamp device …

1486087873 devA …

1486086721 devX …

select("data.*")

(not nested)



Transforming Data

Cast binary value to string
Name it column json

Parse json string and expand into 
nested columns, name it data

Flatten the nested columns

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

powerful built-in APIs to 
perform complex data 

transformations
from_json, to_json, explode, ... 

100s of functions

(see our blog post)



Writing to

Save parsed data as Parquet 
table in the given path

Partition files by date so that 
future queries on time slices of 
data is fast

e.g. query on last 48 hours of data

val query = parsedData.writeStream
.option("checkpointLocation", ...)
.partitionBy("date")
.format("parquet")
.start("/parquetTable")



Checkpointing

Enable checkpointing by 
setting the checkpoint 
location to save offset logs

start actually starts a 
continuous running 
StreamingQuery in the 
Spark cluster

val query = parsedData.writeStream
.option("checkpointLocation", ...)
.format("parquet")
.partitionBy("date")
.start("/parquetTable/")



Streaming Query

query is a handle to the continuously 
running StreamingQuery

Used to monitor and manage the 
execution

val query = parsedData.writeStream
.option("checkpointLocation", ...)
.format("parquet")
.partitionBy("date")
.start("/parquetTable")/")
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Data Consistency on Ad-hoc Queries

Data available for complex, ad-hoc analytics within seconds

Parquet table is updated atomically, ensures prefix integrity
Even if distributed, ad-hoc queries will see either all updates from 
streaming query or none, read more in our blog

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

complex, ad-hoc 
queries on 

latest 
data

seconds!



Working With Time



Event Time

Many use cases require aggregate statistics by event time
E.g. what's the #errors in each system in the 1 hour windows?

Many challenges
Extracting event time from data, handling late, out-of-order data

DStream APIs were insufficient for event-time stuff



Event time Aggregations

Windowing is just another type of grouping in Struct. 
Streaming

number of records every hour

Support UDAFs!

parsedData
.groupBy(window("timestamp","1 hour"))
.count()

parsedData
.groupBy(

"device", 
window("timestamp","10 mins"))

.avg("signal")

avg signal strength of each 
device every 10 mins



Stateful Processing for Aggregations

Aggregates has to be saved as 
distributed state between triggers

Each trigger reads previous state and 
writes updated state

State stored in memory, 
backed by write ahead log in HDFS/S3

Fault-tolerant, exactly-once guarantee!
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state updates 
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log for checkpointing
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Automatically handles Late Data

12:00 - 13:00 1 12:00 - 13:00 3

13:00 - 14:00 1

12:00 - 13:00 3

13:00 - 14:00 2

14:00 - 15:00 5

12:00 - 13:00 5

13:00 - 14:00 2

14:00 - 15:00 5

15:00 - 16:00 4

12:00 - 13:00 3

13:00 - 14:00 2

14:00 - 15:00 6

15:00 - 16:00 4

16:00 - 17:00 3

13:00 14:00 15:00 16:00 17:00 Keeping state allows 
late data to update 
counts of old windows

red = state updated 
with late data

But size of the state increases indefinitely 
if old windows are not dropped



Watermarking 

Watermark - moving threshold of 
how late data is expected to be 
and when to drop old state

Trails behind max seen event time

Trailing gap is configurable

event time 

max event time

watermark data older 
than 

watermark 
not expected

12:30 PM

12:20 PM

trailing gap
of 10 mins



Watermarking

Data newer than watermark may 
be late, but allowed to aggregate

Data older than watermark is "too 
late" and dropped

Windows older than watermark 
automatically deleted to limit the 
amount of intermediate state

max event time

event time 

watermark

late data
allowed to 
aggregate

data too 
late, 

dropped



Watermarking

max event time

event time 

watermark

allowed 
lateness
of 10 mins

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()

late data
allowed to 
aggregate

data too 
late, 

dropped

Useful only in stateful operations
(streaming aggs, dropDuplicates, mapGroupsWithState, ...)

Ignored in non-stateful streaming 
queries and batch queries



Watermarking

data too late, 
ignored in counts, 
state dropped

Processing Time12:00

12:05

12:10

12:15

12:10 12:15 12:20

12:07

12:13

12:08

Ev
en

t T
im

e
12:15

12:18

12:04

watermark updated to 
12:14 - 10m = 12:04
for next trigger, 
state < 12:04 deleted

data is late, but 
considered in counts

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()

system tracks max 
observed event time

12:08

wm = 12:04

10
 m

in

12:14

More details in my blog post



Clean separation of concerns

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()
.writeStream
.trigger("10 seconds")
.start()

Query Semantics

Processing Details

separated from



Clean separation of concerns

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()
.writeStream
.trigger("10 seconds")
.start()

Query Semantics
How to group data by time?
(same for batch & streaming)

Processing Details



Clean separation of concerns

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()
.writeStream
.trigger("10 seconds")
.start()

Query Semantics
How to group data by time?
(same for batch & streaming)

Processing Details
How late can data be?



Clean separation of concerns

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()
.writeStream
.trigger("10 seconds")
.start()

Query Semantics
How to group data by time?
(same for batch & streaming)

Processing Details
How late can data be?
How often to emit updates? 



Arbitrary Stateful Operations [Spark 2.2]

mapGroupsWithState
allows any user-defined
stateful function to a 
user-defined state

Direct support for per-key 
timeouts in event-time or 
processing-time

Supports Scala and Java
70

ds.groupByKey(_.id)
.mapGroupsWithState

(timeoutConf)
(mappingWithStateFunc)

def mappingWithStateFunc(
key: K,
values: Iterator[V],
state: GroupState[S]): U = {

// update or remove state
// set timeouts
// return mapped value 

}



Other interesting operations

Streaming Deduplication 
Watermarks to limit state

Stream-batch Joins

Stream-stream Joins
Can use mapGroupsWithState
Direct support oming soon!

val batchData = spark.read
.format("parquet")
.load("/additional-data")

parsedData.join(batchData, "device")

parsedData.dropDuplicates("eventId")



Building Complex 
Continuous Apps



Metric Processing @

Dashboards Analyze	trends	in	usage	as	they	occur

Alerts Notify	engineers	of	critical	issues

Ad-hoc	Analysis Diagnose	issues	when	they	occur

ETL Clean, normalize and store historical data

Events generated by user actions (logins, clicks, spark job updates)



Metric Processing @

Dashboards

Alerts

Ad-hoc	Analysis

ETL

Difficult with only streaming frameworks

Limited retention in 
streaming storage

Inefficient for ad-hoc queries

Hard for novice users 
(limited or no SQL support)



Metric Processing @

=

Metrics

Filter

ETL

Dashboards

Ad-hoc
Analysis

Alerts



Read from 
rawLogs = spark.readStream

.format("kafka")

.option("kafka.bootstrap.servers", ...)

.option("subscribe", "rawLogs")

.load()

augmentedLogs = rawLogs
.withColumn("msg", 

from_json($"value".cast("string"), 
schema))

.select("timestamp", "msg.*")

.join(table("customers"), ["customer_id"])

DataFrames can be 
reused for multiple 
streams

Can build libraries of 
useful DataFrames and 
share code between 
applications

JSON ETL



Write to 

augmented
.repartition(1)
.writeStream
.format("parquet")
.option("path", "/data/metrics")
.trigger("1 minute")
.start()

Store augmented stream as efficient 
columnar data for later processing 

Latency: ~1 minute

Buffer data and 
write one large file 

every minute for 
efficient reads

ETL



Dashboards

logins = spark.readStream.parquet("/data/metrics")
.where("metric = 'login'")
.groupBy(window("timestamp", "1 minute"))
.count()

display(logins)  // Visualize in Databricks notebooks

Always up-to-date visualizations of 
important business trends

Latency: ~1 minute to hours (configurable) Dashboards



Filter and write to

filteredLogs = augmentedLogs
.where("eventType = 'clusterHeartbeat'")
.selectExpr("to_json(struct("*")) as value")

filteredLogs.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", ...)
.option("topic", "clusterHeartbeats")
.start()

Forward filtered and augmented 
events back to Kafka
Latency: ~100ms average

Filter

to_json() to convert 
columns back into json 
string, and then save as 

different Kafka topic



Simple Alerts

sparkErrors
.as[ClusterHeartBeat]
.filter(_.load > 99)
.writeStream
.foreach(new PagerdutySink(credentials))

E.g. Alert when Spark cluster load > threshold

Latency: ~100 ms

Alerts

Notify PagerDuty



Complex Alerts

sparkErrors
.as[ClusterHeartBeat]
.groupBy(_.id)
.flatMapGroupsWithState(Update, ProcessingTimeTimeout("1 minute")) {

(id: Int, events: Iterator[ClusterHeartBeat], state: GroupState[ClusterState]) =>
... // check if cluster non-responsive for a while

}

E.g. Monitor health of Spark clusters 
using custom stateful logic

Latency: ~10 seconds

Alerts

React if no heartbeat 
from cluster for  1 min



Ad-hoc Analysis

SELECT *
FROM parquet.`/data/metrics`
WHERE level IN ('WARN', 'ERROR')
AND customer = "…"
AND timestamp < now() – INTERVAL 1 HOUR

Trouble shoot problems as they 
occur with latest information 

Latency: ~1 minute

Ad-hoc
Analysis

will read latest data 
when query executed



Metric Processing @

=

Metrics

Filter

ETL

Dashboards

Ad-hoc
Analysis

Alerts14+ billion records / hour 
with 10 nodes

meet diverse latency requirements 
as efficiently as possible



More Info
Structured Streaming Programming Guide

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Databricks blog posts for more focused discussions
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html

https://databricks.com/blog/2017/02/23/working-complex-data-formats-structured-streaming-apache-spark-2-1.html

https://databricks.com/blog/2017/04/26/processing-data-in-apache-kafka-with-structured-streaming-in-apache-spark-2-2.html

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html

and more to come, stay tuned!!



Deep Learning

• https://databricks.com/blog/2017/06/06/databricks-vision-
simplify-large-scale-deep-learning.html

• rxin@databricks.com


