
Apache Spark Tutorial

Reynold Xin @rxin
BOSS workshop at VLDB 2017

Apache Spark

• The most popular and de-facto framework for big data (science)
• APIs in SQL, R, Python, Scala, Java
• Support for SQL, ETL, machine learning/deep learning, graph …

• This tutorial (with hands-on components):
• Brief Intro to Spark’s DataFrame/Dataset API (and internals)
• Deep Dive into Structured Streaming
• Deep Learning for the Masses (with simple APIs and less data to train)

Who is this guy?

#1 committer on Spark project
Databricks Cofounder & Chief Architect

UC Berkeley AMPLab PhD (on leave since 2013)

Some Setup First

• https://community.cloud.databricks.com

• http://tinyurl.com/vldb2017

• RDD
– Old, basic abstraction (in NSDI paper)

• ML Pipelines
– Self-evident

Abstractions in Spark 2.0+

• DataFrame
– Similar to relational table
– Imperative-like programming model,

but declarative
– Supports both batch and streaming

• Dataset
– DataFrame, with compile-time type

safety

DataFrame

• Distributed collection of data grouped into named columns (i.e.
RDD with schema)
• DSL designed for common tasks
• Metadata
• Sampling
• Project, filter, aggregation, join, …
• UDFs

• Available in Python, Scala, Java, and R (via SparkR)

DataFrame Internals (SIGMOD’15)

• Represented internally as a “logical plan”

• Execution is lazy, allowing it to be optimized by a query
optimizer

7

Plan Optimization & Execution

HyPer-inspired Whole Stage Code Generation

Scan

Filter

Project

Aggregate

select count(*) from store_sales
where ss_item_sk = 1000

Volcano Iterator Model

Standard for 30 years: almost
all databases do it

Each operator is an “iterator”
that consumes records from
its input operator

class Filter {
def next(): Boolean = {
var found = false
while (!found && child.next()) {
found = predicate(child.fetch())

}
return found

}

def fetch(): InternalRow = {
child.fetch()

}
…

}

What if we hire a college freshman to
implement this query in Java in 10 mins?

select count(*) from store_sales
where ss_item_sk = 1000

var count = 0
for (ss_item_sk in store_sales) {
if (ss_item_sk == 1000) {
count += 1

}
}

Volcano model
30+ years of database research

college freshman
hand-written code in 10 minsvs

Volcano 13.95 million
rows/sec

college
freshman

125 million
rows/sec

Note: End-to-end, single thread, single column, and data originated in Parquet on disk

High throughput

How does a student beat 30 years of research?

Volcano

1. Many virtual function calls

2. Data in memory (or cache)

3. No loop unrolling, SIMD, pipelining

hand-written code

1. No virtual function calls

2. Data in CPU registers

3. Compiler loop unrolling, SIMD,
pipelining

Take advantage of all the information that is known after query compilation

Whole-stage Codegen

Fusing operators together so the generated code looks like hand
optimized code:

- Identity chains of operators (“stages”)
- Compile each stage into a single function
- Functionality of a general purpose execution engine; performance

as if hand built system just to run your query

Whole-stage Codegen: Planner

Scan

Filter

Project

Aggregate
long count = 0;
for (ss_item_sk in store_sales) {
if (ss_item_sk == 1000) {
count += 1;

}
}

Whole-stage Codegen: Spark as a “Compiler”

Exercise
http://tinyurl.com/vldb2017

Easy, Scalable, Fault-tolerant
Stream Processing with
Structured Streaming

building robust
stream processing

apps is hard

Complexities in stream processing

COMPLEX DATA

Diverse data formats
(json, avro, binary, …)

Data can be dirty,
late, out-of-order

COMPLEX SYSTEMS

Diverse storage systems
(Kafka, S3, Kinesis, RDBMS, …)

System failures

COMPLEX WORKLOADS

Combining streaming with
interactive queries

Machine learning

Structured Streaming

stream processing on Spark SQL engine
fast, scalable, fault-tolerant

rich, unified, high level APIs
deal with complex data and complex workloads

rich ecosystem of data sources
integrate with many storage systems

you
should not have to

reason about streaming

you
should write simple queries

&

Spark
should continuously update the answer

Treat Streams as Unbounded Tables

data stream unbounded input table

new data in the
data stream

=
new rows appended
to a unbounded table

static data =
bounded table

streaming data =
unbounded table

Single
API !

Table ó Dataset/DataFrame

Batch Queries with DataFrames
input = spark.read

.format("json")

.load("source-path")

result = input
.select("device", "signal")
.where("signal > 15")

result.write
.format("parquet")
.save("dest-path")

Create input DF from Json file

Create result DF by querying for
some devices to create

Output result to parquet file

Result
Table

Input
Table

Query

Output

input = spark.readStream
.format("json")
.load("source-path")

result = input
.select("device", "signal")
.where("signal > 15")

result.writeStream
.format("parquet")
.start("dest-path")

Create input DF from Kafa
Replace read with readStream

Select some devices
Query does not change

Write to Parquet file stream
Replace save() with start()

Result
Table

Input
Table

Query

Output

Streaming Queries with DataFrames

Conceptual Model
t = 1 t = 2 t = 3

Result

Q
ue

ry

Time

Input data up
to t = 3

result up
to t = 3

data up
to t = 1

data up
to t = 2

result up
to t = 1

result up
to t = 2

As the input table grows
with new data, the result
table changes

Every trigger interval, we
can output the changes in
the result

Trigger: every 1 sec

Output

Conceptual Model
t = 1 t = 2 t = 3

Result

Q
ue

ry

Time

Input data up
to t = 3

result up
to t = 3

data up
to t = 1

data up
to t = 2

result up
to t = 1

result up
to t = 2

Output mode defines
what changes to output

Complete mode outputs
the entire result

Complete
Output

Conceptual Model
t = 1 t = 2 t = 3

Result

Q
ue

ry

Time

Input data up
to t = 3

result up
to t = 3

data up
to t = 1

data up
to t = 2

result up
to t = 1

result up
to t = 2

Output mode defines
what changes to output

Append mode outputs
new tuples only

Update mode output
tuples that have changed
since the last trigger Append

Output

Conceptual Model
t = 1 t = 2 t = 3

Result

Incremental
Query

Time

Input data up
to t = 3

result up
to t = 3

data up
to t = 1

data up
to t = 2

result up
to t = 1

result up
to t = 2

Append
Output

Full input does not need
to be processed every
trigger

Engine converts query
to an incremental query
that operates only on
new data to generate
output

Streaming word count

Anatomy of a Streaming Query

Anatomy of a Streaming Query
spark.readStream
.format("kafka")
.option("subscribe", "input")
.load()
.groupBy($"value".cast("string"))
.count()
.writeStream
.format("kafka")
.option("topic", "output")
.trigger("1 minute")
.outputMode(OutputMode.Complete())
.option("checkpointLocation", "…")
.start()

Source

• Specify one or more locations
to read data from

• Built in support for
Files/Kafka/Socket,
pluggable.

• Can include multiple sources
of different types using
union()

Anatomy of a Streaming Query
spark.readStream
.format("kafka")
.option("subscribe", "input")
.load()
.groupBy('value.cast("string") as 'key)
.agg(count("*") as 'value)
.writeStream
.format("kafka")
.option("topic", "output")
.trigger("1 minute")
.outputMode(OutputMode.Complete())
.option("checkpointLocation", "…")
.start()

Transformation

• Using DataFrames,
Datasets and/or SQL.

• Catalyst figures out how to
execute the transformation
incrementally.

• Internal processing always
exactly-once.

DataFrames,
Datasets, SQL

input = spark.readStream
.format("kafka")
.option("subscribe", "topic")
.load()

result = input
.select("device", "signal")
.where("signal > 15")

result.writeStream
.format("parquet")
.start("dest-path")

Logical
Plan

Read from
Kafka

Project
device, signal

Filter
signal > 15

Write to
Kafka

Spark automatically streamifies!

Spark SQL converts batch-like query to a series of incremental
execution plans operating on new batches of data

Series of Incremental
Execution Plans

Kafka
Source

Optimized
Operator
codegen, off-

heap, etc.

Kafka
Sink

Optimized
Physical Plan

pr
oc

es
s

ne
w

 d
at

a

t = 1 t = 2 t = 3

pr
oc

es
s

ne
w

 d
at

a

pr
oc

es
s

ne
w

 d
at

a

Anatomy of a Streaming Query
spark.readStream
.format("kafka")
.option("subscribe", "input")
.load()
.groupBy('value.cast("string") as 'key)
.agg(count("*") as 'value)
.writeStream
.format("kafka")
.option("topic", "output")
.trigger("1 minute")
.outputMode(OutputMode.Complete())
.option("checkpointLocation", "…")
.start()

Sink

• Accepts the output of each
batch.

• When supported sinks are
transactional and exactly
once (Files).

• Use foreach to execute
arbitrary code.

Anatomy of a Streaming Query
spark.readStream
.format("kafka")
.option("subscribe", "input")
.load()
.groupBy('value.cast("string") as 'key)
.agg(count("*") as 'value)
.writeStream
.format("kafka")
.option("topic", "output")
.trigger("1 minute")
.outputMode("update")
.option("checkpointLocation", "…")
.start()

Output mode – What's output
• Complete – Output the whole answer

every time

• Update – Output changed rows

• Append – Output new rows only

Trigger – When to output
• Specified as a time, eventually

supports data size

• No trigger means as fast as possible

Anatomy of a Streaming Query
spark.readStream
.format("kafka")
.option("subscribe", "input")
.load()
.groupBy('value.cast("string") as 'key)
.agg(count("*") as 'value)
.writeStream
.format("kafka")
.option("topic", "output")
.trigger("1 minute")
.outputMode("update")
.option("checkpointLocation", "…")
.start()

Checkpoint

• Tracks the progress of a
query in persistent storage

• Can be used to restart the
query if there is a failure.

Fault-tolerance with Checkpointing

Checkpointing – tracks progress
(offsets) of consuming data from
the source and intermediate state.

Offsets and metadata saved as JSON

Can resume after changing your
streaming transformations

end-to-end
exactly-once
guarantees

pr
oc

es
s

ne
w

 d
at

a

t = 1 t = 2 t = 3

pr
oc

es
s

ne
w

 d
at

a

pr
oc

es
s

ne
w

 d
at

a

write
ahead

log

Complex Streaming ETL

Traditional ETL

Raw, dirty, un/semi-structured is data dumped as files

Periodic jobs run every few hours to convert raw data
to structured data ready for further analytics

43

file
dump

seconds hours
table

10101010

Traditional ETL

Hours of delay before taking decisions on latest data

Unacceptable when time is of essence
[intrusion detection, anomaly detection, etc.]

file
dump

seconds hours
table

10101010

Streaming ETL w/ Structured Streaming

Structured Streaming enables raw data to be available
as structured data as soon as possible

45

seconds
table

10101010

Streaming ETL w/ Structured Streaming

Example

Json data being received in Kafka

Parse nested json and flatten it

Store in structured Parquet table

Get end-to-end failure guarantees

val rawData = spark.readStream
.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

val parsedData = rawData
.selectExpr("cast (value as string) as json"))
.select(from_json("json", schema).as("data"))
.select("data.*")

val query = parsedData.writeStream
.option("checkpointLocation", "/checkpoint")
.partitionBy("date")
.format("parquet")
.start("/parquetTable")

Reading from Kafka

Specify options to configure

How?
kafka.boostrap.servers => broker1,broker2

What?
subscribe => topic1,topic2,topic3 // fixed list of topics
subscribePattern => topic* // dynamic list of topics
assign => {"topicA":[0,1] } // specific partitions

Where?
startingOffsets => latest(default) / earliest / {"topicA":{"0":23,"1":345} }

val rawData = spark.readStream
.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

Reading from Kafka

val rawData = spark.readStream
.format("kafka")
.option("kafka.boostrap.servers",...)
.option("subscribe", "topic")
.load()

rawData dataframe has
the following columns

key value topic partition offset timestamp

[binary] [binary] "topicA" 0 345 1486087873

[binary] [binary] "topicB" 3 2890 1486086721

Transforming Data

Cast binary value to string
Name it column json

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

Transforming Data

Cast binary value to string
Name it column json

Parse json string and expand into
nested columns, name it data

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

json

{ "timestamp": 1486087873, "device": "devA", …}

{ "timestamp": 1486082418, "device": "devX", …}

data (nested)

timestamp device …

1486087873 devA …

1486086721 devX …

from_json("json")
as "data"

Transforming Data

Cast binary value to string
Name it column json

Parse json string and expand into
nested columns, name it data

Flatten the nested columns

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

data (nested)

timestamp device …

1486087873 devA …

1486086721 devX …

timestamp device …

1486087873 devA …

1486086721 devX …

select("data.*")

(not nested)

Transforming Data

Cast binary value to string
Name it column json

Parse json string and expand into
nested columns, name it data

Flatten the nested columns

val parsedData = rawData
.selectExpr("cast (value as string) as json")
.select(from_json("json", schema).as("data"))
.select("data.*")

powerful built-in APIs to
perform complex data

transformations
from_json, to_json, explode, ...

100s of functions

(see our blog post)

Writing to

Save parsed data as Parquet
table in the given path

Partition files by date so that
future queries on time slices of
data is fast

e.g. query on last 48 hours of data

val query = parsedData.writeStream
.option("checkpointLocation", ...)
.partitionBy("date")
.format("parquet")
.start("/parquetTable")

Checkpointing

Enable checkpointing by
setting the checkpoint
location to save offset logs

start actually starts a
continuous running
StreamingQuery in the
Spark cluster

val query = parsedData.writeStream
.option("checkpointLocation", ...)
.format("parquet")
.partitionBy("date")
.start("/parquetTable/")

Streaming Query

query is a handle to the continuously
running StreamingQuery

Used to monitor and manage the
execution

val query = parsedData.writeStream
.option("checkpointLocation", ...)
.format("parquet")
.partitionBy("date")
.start("/parquetTable")/")

pr
oc

es
s

ne
w

 d
at

a

t = 1 t = 2 t = 3

pr
oc

es
s

ne
w

 d
at

a

pr
oc

es
s

ne
w

 d
at

a

StreamingQuery

Data Consistency on Ad-hoc Queries

Data available for complex, ad-hoc analytics within seconds

Parquet table is updated atomically, ensures prefix integrity
Even if distributed, ad-hoc queries will see either all updates from
streaming query or none, read more in our blog

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

complex, ad-hoc
queries on

latest
data

seconds!

Working With Time

Event Time

Many use cases require aggregate statistics by event time
E.g. what's the #errors in each system in the 1 hour windows?

Many challenges
Extracting event time from data, handling late, out-of-order data

DStream APIs were insufficient for event-time stuff

Event time Aggregations

Windowing is just another type of grouping in Struct.
Streaming

number of records every hour

Support UDAFs!

parsedData
.groupBy(window("timestamp","1 hour"))
.count()

parsedData
.groupBy(

"device",
window("timestamp","10 mins"))

.avg("signal")

avg signal strength of each
device every 10 mins

Stateful Processing for Aggregations

Aggregates has to be saved as
distributed state between triggers

Each trigger reads previous state and
writes updated state

State stored in memory,
backed by write ahead log in HDFS/S3

Fault-tolerant, exactly-once guarantee!

pr
oc

es
s

ne
w

 d
at

a

t = 1

sink

src

t = 2

pr
oc

es
s

ne
w

 d
at

a

sink

src

t = 3

pr
oc

es
s

ne
w

 d
at

a

sink

src

state state

write
ahead

log

state updates
are written to
log for checkpointing

state

Automatically handles Late Data

12:00 - 13:00 1 12:00 - 13:00 3

13:00 - 14:00 1

12:00 - 13:00 3

13:00 - 14:00 2

14:00 - 15:00 5

12:00 - 13:00 5

13:00 - 14:00 2

14:00 - 15:00 5

15:00 - 16:00 4

12:00 - 13:00 3

13:00 - 14:00 2

14:00 - 15:00 6

15:00 - 16:00 4

16:00 - 17:00 3

13:00 14:00 15:00 16:00 17:00 Keeping state allows
late data to update
counts of old windows

red = state updated
with late data

But size of the state increases indefinitely
if old windows are not dropped

Watermarking

Watermark - moving threshold of
how late data is expected to be
and when to drop old state

Trails behind max seen event time

Trailing gap is configurable

event time

max event time

watermark data older
than

watermark
not expected

12:30 PM

12:20 PM

trailing gap
of 10 mins

Watermarking

Data newer than watermark may
be late, but allowed to aggregate

Data older than watermark is "too
late" and dropped

Windows older than watermark
automatically deleted to limit the
amount of intermediate state

max event time

event time

watermark

late data
allowed to
aggregate

data too
late,

dropped

Watermarking

max event time

event time

watermark

allowed
lateness
of 10 mins

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()

late data
allowed to
aggregate

data too
late,

dropped

Useful only in stateful operations
(streaming aggs, dropDuplicates, mapGroupsWithState, ...)

Ignored in non-stateful streaming
queries and batch queries

Watermarking

data too late,
ignored in counts,
state dropped

Processing Time12:00

12:05

12:10

12:15

12:10 12:15 12:20

12:07

12:13

12:08

Ev
en

t T
im

e
12:15

12:18

12:04

watermark updated to
12:14 - 10m = 12:04
for next trigger,
state < 12:04 deleted

data is late, but
considered in counts

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()

system tracks max
observed event time

12:08

wm = 12:04

10
 m

in

12:14

More details in my blog post

Clean separation of concerns

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()
.writeStream
.trigger("10 seconds")
.start()

Query Semantics

Processing Details

separated from

Clean separation of concerns

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()
.writeStream
.trigger("10 seconds")
.start()

Query Semantics
How to group data by time?
(same for batch & streaming)

Processing Details

Clean separation of concerns

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()
.writeStream
.trigger("10 seconds")
.start()

Query Semantics
How to group data by time?
(same for batch & streaming)

Processing Details
How late can data be?

Clean separation of concerns

parsedData
.withWatermark("timestamp", "10 minutes")
.groupBy(window("timestamp","5 minutes"))
.count()
.writeStream
.trigger("10 seconds")
.start()

Query Semantics
How to group data by time?
(same for batch & streaming)

Processing Details
How late can data be?
How often to emit updates?

Arbitrary Stateful Operations [Spark 2.2]

mapGroupsWithState
allows any user-defined
stateful function to a
user-defined state

Direct support for per-key
timeouts in event-time or
processing-time

Supports Scala and Java
70

ds.groupByKey(_.id)
.mapGroupsWithState

(timeoutConf)
(mappingWithStateFunc)

def mappingWithStateFunc(
key: K,
values: Iterator[V],
state: GroupState[S]): U = {

// update or remove state
// set timeouts
// return mapped value

}

Other interesting operations

Streaming Deduplication
Watermarks to limit state

Stream-batch Joins

Stream-stream Joins
Can use mapGroupsWithState
Direct support oming soon!

val batchData = spark.read
.format("parquet")
.load("/additional-data")

parsedData.join(batchData, "device")

parsedData.dropDuplicates("eventId")

Building Complex
Continuous Apps

Metric Processing @

Dashboards Analyze	trends	in	usage	as	they	occur

Alerts Notify	engineers	of	critical	issues

Ad-hoc	Analysis Diagnose	issues	when	they	occur

ETL Clean, normalize and store historical data

Events generated by user actions (logins, clicks, spark job updates)

Metric Processing @

Dashboards

Alerts

Ad-hoc	Analysis

ETL

Difficult with only streaming frameworks

Limited retention in
streaming storage

Inefficient for ad-hoc queries

Hard for novice users
(limited or no SQL support)

Metric Processing @

=

Metrics

Filter

ETL

Dashboards

Ad-hoc
Analysis

Alerts

Read from
rawLogs = spark.readStream

.format("kafka")

.option("kafka.bootstrap.servers", ...)

.option("subscribe", "rawLogs")

.load()

augmentedLogs = rawLogs
.withColumn("msg",

from_json($"value".cast("string"),
schema))

.select("timestamp", "msg.*")

.join(table("customers"), ["customer_id"])

DataFrames can be
reused for multiple
streams

Can build libraries of
useful DataFrames and
share code between
applications

JSON ETL

Write to

augmented
.repartition(1)
.writeStream
.format("parquet")
.option("path", "/data/metrics")
.trigger("1 minute")
.start()

Store augmented stream as efficient
columnar data for later processing

Latency: ~1 minute

Buffer data and
write one large file

every minute for
efficient reads

ETL

Dashboards

logins = spark.readStream.parquet("/data/metrics")
.where("metric = 'login'")
.groupBy(window("timestamp", "1 minute"))
.count()

display(logins) // Visualize in Databricks notebooks

Always up-to-date visualizations of
important business trends

Latency: ~1 minute to hours (configurable) Dashboards

Filter and write to

filteredLogs = augmentedLogs
.where("eventType = 'clusterHeartbeat'")
.selectExpr("to_json(struct("*")) as value")

filteredLogs.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", ...)
.option("topic", "clusterHeartbeats")
.start()

Forward filtered and augmented
events back to Kafka
Latency: ~100ms average

Filter

to_json() to convert
columns back into json
string, and then save as

different Kafka topic

Simple Alerts

sparkErrors
.as[ClusterHeartBeat]
.filter(_.load > 99)
.writeStream
.foreach(new PagerdutySink(credentials))

E.g. Alert when Spark cluster load > threshold

Latency: ~100 ms

Alerts

Notify PagerDuty

Complex Alerts

sparkErrors
.as[ClusterHeartBeat]
.groupBy(_.id)
.flatMapGroupsWithState(Update, ProcessingTimeTimeout("1 minute")) {

(id: Int, events: Iterator[ClusterHeartBeat], state: GroupState[ClusterState]) =>
... // check if cluster non-responsive for a while

}

E.g. Monitor health of Spark clusters
using custom stateful logic

Latency: ~10 seconds

Alerts

React if no heartbeat
from cluster for 1 min

Ad-hoc Analysis

SELECT *
FROM parquet.`/data/metrics`
WHERE level IN ('WARN', 'ERROR')
AND customer = "…"
AND timestamp < now() – INTERVAL 1 HOUR

Trouble shoot problems as they
occur with latest information

Latency: ~1 minute

Ad-hoc
Analysis

will read latest data
when query executed

Metric Processing @

=

Metrics

Filter

ETL

Dashboards

Ad-hoc
Analysis

Alerts14+ billion records / hour
with 10 nodes

meet diverse latency requirements
as efficiently as possible

More Info
Structured Streaming Programming Guide

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Databricks blog posts for more focused discussions
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html

https://databricks.com/blog/2017/02/23/working-complex-data-formats-structured-streaming-apache-spark-2-1.html

https://databricks.com/blog/2017/04/26/processing-data-in-apache-kafka-with-structured-streaming-in-apache-spark-2-2.html

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html

and more to come, stay tuned!!

Deep Learning

• https://databricks.com/blog/2017/06/06/databricks-vision-
simplify-large-scale-deep-learning.html

• rxin@databricks.com

